J. Multidiscip. Res. Healthcare

The Potential Role of Nicotine in the Treatment of Learning and Memory Impairment after REM Sleep Deprivation.

Idris Long, Norlinda Abd Rashid

  • Download PDF
  • DOI Number

Sleep deprivation, Nicotine, Hippocampus, Learning and Memory Impairment

PUBLISHER the author(s) 2015. this article is published with open access at www.chitkara.edu.in/publications.

Sleep depri vation has become a contributing factor to the world’s health concerns such as cardiovascular disease, mental illness and inattentiveness in occupationand decision making. It can also disturb synaptic plasticity that can lead to learning and memory impairment. Therefore, boosting cholinergic activity using acetylcholine imitator that can be found in the tobacco plant, known as nicotine, is essential in reversing the negative influences of sleep loss in the brain. Thus, studies on the effects of nicotine treatment on molecular mechanisms and structural changes of hippocampal brain cells are vital in order to gain more understanding and to overcome the detrimental consequencesof learning and memory impairment related to sleep divest.


Numerous people in our society today are unable to obtain sufficient sleep on a daily basis. Social and occupational demands cause them additional pressure to sacrifice sleep in order to meet urbanisation lifestyles and to increase productivity. Chronic sleep loss is associated with chronic problem such as heart disease, kidney disease, high blood pressure, diabetes, obesity and mental illness [21, 26, 31, 33, 43, 44, 60]. In addition, the loss of sleep can also contribute to irritability, aggression, inattentiveness and diminished psychomotor vigilance [34, 48, 59]. Therefore, it is critical to understand the molecular and cellular impact of sleep loss on the brain especially hippocampus as an effort to identify novel therapeutic approaches to counteract these effects.

Page(s) 17–30
URL http://dspace.chitkara.edu.in/jspui/bitstream/1/641/3/21002_JMRH_Idris%20Long.pdf
ISSN Print : 2393-8536, Online : 2393-8544
DOI https://doi.org/10.15415/jmrh.2015.21002

In brief, there is an increased frequency of nicotine consumption in REM sleep deprivation smokers and the initiation of smoking among non-smokers during REM sleep deprivation [29, 47]. This scenario might be a form of selfmedication as acute nicotine treatment prevented REM sleep deprivation induced impairment of short-term memory and synaptic plasticity of hippocampal CA1 [4]. Although there is a wealth of evidence that proved nicotine treatment attenuates the impairment of learning and memory, the protective effect mechanism of nicotine that improves REM sleep deprivation induced learning and memory impairment remain uncertain. Previous studies have proven that the negative effects of REM sleep deprivation can be reversed by taking low dosage of brain stimulant such as nicotine. Nevertheless, the molecular mechanism of how the ‘reversible effect’ is still under-explored. While REM sleep deprivation prevents long term potentiates (LTP) of neuron in hippocampus and affected molecular expression of certain receptors and proteins such as NMDA receptors, GABAergic receptors, BDNF, p-CREB and DREAM protein, the relationship of these receptors and proteins when nicotine is administered in REM sleep deprivation model has yet to be discovered. There is also very limited literature on the ultra-structural changes of the hippocampal cell in REM sleep deprivation and none on REM sleep deprivation nicotine treatment. Therefore, this information is vital and it may serve the basic facts in understanding the physiological process of REM sleep deprivation and how nicotine could reverse the learning and memory impairment of REM sleep deprivation.

  • Abdullah, M. S., Akpokerie, R. U., Adedokun, T. P. (2014). Determination Of Nicotine Content In Some Cigarette (Aspen, Excel and Benson & Hedges) Brands Sold Within Kontagora Market, Nigeria. Global Advanced Research Journal of Food Science and Technology, 3: 1–7.
  • Abel, T., Lattal, K. M. (2001). Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr Opin Neurobiol,11(2): 180–187 http://dx.doi. org/10.1016/S0959-4388(00)00194-X
  • Ahmed, T., Frey, J. U. (2005). Plasticity specific phosphorylation of CAMKII, MAP-kinase and CREB during late-LTP in rat hippocampal slices in vitro. Neuropharmacology, 49(4): 477–492 http://dx.doi.org/10.1016/j.neuropharm. 2005.04.018
  • Aleisa, A. M., Alzoubi, K. H., Alkadhi, K. A. (2011). Post-learning REM sleep deprivation impairs long-term memory: reversal by acute nicotine treatment. Neurosci. Lett, 499(1): 28–31 http://dx.doi.org/10.1016/j.neulet.2011.05.025
  • Aleisa, A. M., Alzoubi, K. H., Gerges, N. Z, Alkadhi, K. A. (2006). Chronic psychosocial stress-induced impairment of hippocampal LTP: possible role of BDNF. Neurobiology of Disease, 22(3): 453–462 http://dx.doi.org/10.1016/j.nbd. 2005.12.005
  • Aleisa A. M., Helal, G., Alhaider, I. A., Alzoubi, K. H., Srivareerat M, Tran TT, Al-Rejaie SS, Alkadhi, K. A. (2010). Acute nicotine treatment prevents REMsleep deprivation-induced learning and memory impairment in rat. Hippocampus, 21(8): 899–909.
  • Alk ondon M., Braga M. F., Pereira, E.F., Maelicke, A., Albuquerque, E.X. (2000). Alpha7 nicotinic acetylcholine receptors and modulation of GABAergic synaptic transmission in the hippocampus. Eur J Pharmacol, 393(1–3): 59–67 http://dx.doi. org/10.1016/S0014-2999(00)00006-6
  • An W. F., Bowlby, M. R., Betty, M., Cao, J., Ling, H. P., Mendoza, G., Hinson, J.W., Matson, K. I., Strassle, B.W., Trimmer, J.S., Rhodes, K. J. (2000). Modulation of A-type potassium channels by a family of calcium sensors. Nature, 403(6769): 553–55 http://dx.doi.org/10.1038/35000592
  • Beno witz, N.L. (1996). Cotinine as a biomarker of environmental tobacco smoke exposure. Epidemiol Rev, 18(2): 188–204. http://dx.doi.org/10.1093/oxfordjournals. epirev.a017925
  • Beno witz, N. L., Hukkanen, J., Jacob, P., 3rd (2009). Nicotine Chemistry, Metabolism, Kinetics and Biomarkersin Nicotine Psychopharmacology. Handbook Exp Pharmacol192: 29–60. http://dx.doi.org/10.1007/978-3-540-69248-5_2
  • Beno witz, N. L., Jacob, P. 3rd, Ahijevych, K., Jarvis, M. J., Hall, S., LeHouezec, J., Hansson,A.,Lichtenstein, E., Henningfield, J., Tsoh, J., Hurt, R. D., Velicer, W. (2002). Biochemical verification of tobacco use and cessation. Nicotine and Tobacco Research, 4(2): 149–159. http://dx.doi.org/10.1080/14622200210123581
  • Boonstra, T. W., Stins, J. F, Daffertshofer, A., Beek, P. J. (2007). Effects of sleep deprivation on neural functioning: an integrative review. Cell Mol Life Sci, 64(7–8): 934–946. http://dx.doi.org/10.1007/s00018-007-6457-8
  • Breese, C. R., Marks, M. J., Logel, J., Adams, C.E., Sullivan, B., Collins AC, Leonard S (1997). Effect of smoking history on [3H]nicotine binding in human postmortem brain. Pharmacol Exp Ther,282(1): 7–13
  • Buxbaum, J.D. (2004). A role for calsenilin and related proteins in multiple aspects of neuronal function. Biochem Biophys Res Commun,322(4): 1140-4 http://dx.doi. org/10.1016/j.bbrc.2004.08.001
  • Campbell, I. G., Guinan, M. J., Horo witz, J. M. (2002). Sleep Deprivation Impairs Long-Term Potentiation in Rat Hippocampal Slices. J Neurophysiol,88(2): 1073– 1076
  • Carrion, A. M., Link W. A., Ledo, F., Mellstrom, B., Naranjo, J. R. (1999). DREAM is a Ca2+-regulated transcriptional repressor. Nature, 398(6722): 80–84 http://dx.doi. org/10.1038/18044
  • Chang, H. M., Liao, W. C., Sheu, J. N., Chang, C. C., Lan, C. T., Mai, F. D., (2012). Sleep deprivation impairs Ca2+ expression in the hippocampus: ionic imaging analysis for cognitive deficiency with TOF-SIMS. Micros Microanal 18(3): 425–435 http://dx.doi.org/10.1017/S1431927612000086
  • Chen, C., Hardy , M., Zhang, J., LaHoste, G. J., Bazan, N. G. (2006). Altered NMDA receptor trafficking contributes to sleep deprivation-induced hippocampal synaptic and cognitive impairments. Biochem Biophys Res Commun, 340(2): 435–440 http:// dx.doi.org/10.1016/j.bbrc.2005.12.021 Idris long, Norlinda Abd Rashid 26
  • Conn, P . M. (2008). Neuroscience in Medicine 3rd ed. Oregon: Human Press. http:// dx.doi.org/10.1007/978-1-60327-455-5
  • Deiana, S., Platt, B., Riedel, G. (2011). The cholinergic system and spatial learning. Behav Brain Res, 221(2): 389–411 http://dx.doi.org/10.1016/j.bbr.2010.11.036
  • Engeda, J., Mezuk, B., Ratlif f, S., Ning, Y., (2013). Association between duration and quality of sleep and the risk of pre-diabetes: Evidence from NHANES. Diabet Med, 30(6): 676–680 http://dx.doi.org/10.1111/dme.12165
  • F ontan-Lozano, A., Romero-Granados, R, Del-Pozo-Martin, Y., Suarez-Pereira, I., Delgado-Garcia, J. M., Penninger , J. M.(2009). Lack of DREAM protein enhances learning and memory and slows brain aging. Curr Biol, 19(1): 54–60 http://dx.doi. org/10.1016/j.cub.2008.11.056
  • F ontan-Lozano, A., Suarez-Pereira, I., Gonzalez-Forero, D., Carrion, A.M., (2011). The A-current modulates learning via NMDA receptors containing the NR2B subunit. Plos One, 6(9): 1–9. http://dx.doi.org/10.1371/journal.pone.0024915
  • Gais, S., Albouy, G., Boly, M., Dang-Vu, T. T., Darsaud, A., Desseilles, M., Rauchs, G., Schabus, M., Sterpenich, V., Vandewalle, G., Maquet, P., Peigneux, P. (2007). Sleep transforms the cerebral trace of declarative memories. Proc. Natl. Acad. Sci., 104(47): 18778–18783. http://dx.doi.org/10.1073/pnas.0705454104
  • Gais, S., Born, J. (2004). Declarati ve memory consolidation: Mechanisms acting during human sleep. Learning & Memory,11(6): 679–685 http://dx.doi.org/10.1101/ lm.80504
  • Gillin, J. C. (1998). Are sleep disturbances risk factors for anxiety, depressive and addictive disorders? Acta Psychiatry Scand, 393: 39–43. http://dx.doi. org/10.1111/j.1600-0447.1998.tb05965.x
  • Gray , R., Rajan, A. S., Radcliffe, K. A., Yakehiro, M., Dani, J. A. (1996). Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature, 383(6602): 713–716. http://dx.doi.org/10.1038/383713a0
  • Hage wound,R., Havekes, R., Novati, A., Keijser, J. N., Van Der Zee, E.A., Meerlo, P. (2010). Sleep deprivation impairs spatial working memory and reduces hippocampal AMPA receptor phosphorylation. J Sleep Res, 19(2): 280–288. http:// dx.doi.org/10.1111/j.1365-2869.2009.00799.x
  • Hamido vic, A., De-Wit, H. (2010). Sleep deprivation increases cigarette smoking. Pharm. Biochem. and Behav, 93(3):263–269. http://dx.doi.org/10.1016/j. pbb.2008.12.005
  • Hernandez, P . J., Abel, T. (2011). A molecular basis for interaction between sleep and memory. Sleep Med Clin, 6(1): 71–84. http://dx.doi.org/10.1016/j.jsmc.2010.12.004
  • Hirotsu, C., Tufik, S., Bergamaschi, C. T., Tenorio, N.M., Araujo P, Andersen M. L. (2010). Sleep pattern in an experimental model of chronic kidney disease. Am J Physiol Renal Physiol,299(6): 1379–1388. http://dx.doi.org/10.1152/ajprenal.00118.2010
  • Jouv et, D., Vimont, P., Delorme, F., Jouvet, M. (1964). Study of selective deprivation of the paradoxal phase of sleep in the cat. J Physiol (Paris),154: 756–759.
  • Knutson, K. L., Van Cauter, E. (2008). Associations between sleep loss and increased risk of obesity and diabetes. Ann N Y Acad Sci, 1129: 287–304. http://dx.doi. org/10.1196/annals.1417.033
  • Kamphuis, J., Meerlo, P ., Koolhaas, J. M., Lancel, M. (2012). Poor sleep as a potential causal factor in aggression and violence. Sleep Med, 13(4): 327–334. http:// dx.doi.org/10.1016/j.sleep.2011.12.006
  • Ledo, F ., Carrion, A. M., Link, W. A., Mellstrom, B., Naranjo, J. R. (2000).DREAM- alphaCREM interaction via leucine-charged domains derepresses downstream regulatory element-dependent transcription. Mol Cell Biol,20(24): 9120–6. http:// dx.doi.org/10.1128/MCB.20.24.9120-9126.2000
  • Ledo, F ., Kremer, L., Mellstrom, B., Naranjo, J. R. (2002) Ca2+-dependent block of CREB-CBP transcription by repressor DREAM. Embo J,21(17): 4583–92. http:// dx.doi.org/10.1093/emboj/cdf440
  • Li, P ., Wilding, T.J., Kim, S.J., Calejesan, A.A., Huettner, J.E.,Zhuo, M., (1999). Kainate-receptor-mediated sensory synaptic transmission in mammalian spinal cord. Nature, 397 (6715): 161–164. http://dx.doi.org/10.1038/16469
  • Lu, Y., Christian, K., Lu, B., (2008). BDNF: a key regulator for protein synthesisdependent LTP and long-term memory? Neurobiol Learn Mem 89(3): 312– 323. http://dx.doi.org/10.1016/j.nlm.2007.08.018
  • Mallick, B. N., Singh, S., Singh, A., (2010). Mechanism of noradrenaline-induced stimulation of Na-K ATPase activity in the rat brain: Implications on REM sleep deprivation-induced increase in brain excitability. Mol Cell Biochem, 336(1–2): 3–16. http://dx.doi.org/10.1007/s11010-009-0260-9
  • McDermott, C. M., LaHoste, G. J., Chen,C., Musto, A., Bazan, N.G., Magee, J.C., (2003). Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. J Neurosci, 23(29): 9687–9695.
  • McDermott, C.M., Hardy , M.N., Bazan, N. G., Magee, J. C., (2006). Sleep deprivation-induced alterations in excitatory synaptic transmission in the CA1 region of the rat hippocampus. The Journal of Physiology, 570(3): 553–565 http://dx.doi. org/10.1113/jphysiol.2005.093781
  • Mendoza, J. E., F oundas, A. L. (2008).Clinical Neuroanatomy: A Neurobehavioral Approach. New York: Springer-Verlag.
  • Najafian, J., Mohamadif ard, N., Siadat, Z.D., Sadri,G., Rahmati, M.R. (2013). Association between sleep duration and diabetes mellitus: Isfahan Healthy Heart Program. Niger J Clin Pract, 16(1): 59–62. http://dx.doi.org/10.4103/1119- 3077.106756
  • P alagini, L., Bruno, R. M., Gemignani, A., Baglioni, C., Ghiadoni, L., Riemann, D. (2013). Sleep loss and hypertension: A systematic review. Curr Pharm Des,19(13): 2409–2419. http://dx.doi.org/10.2174/1381612811319130009
  • Peigneux,P ., Laureys, L., Delbeuck, X., Maquet, P. (2001). Sleeping brain, learning brain. The role of sleep for memory systems. Neuroreport, 12(18): 111–124. http:// dx.doi.org/10.1097/00001756-200112210-00001
  • Perry , D. C., Davila-Garcia, M. I., Stockmeier, C.A., Kellar, K.J., (1999). Increased nicotinic receptors in brains from smokers: membrane binding and autoradiography studies. J Pharmacol ExTher, 289(3): 1545–1552.
  • Philip, P ., Taillard, J., Leger, D., Diefenbach, K., Akerstedt, T., Bioulac, B., Guilleminault, C. (2002). Work and rest sleep schedules of 227 European truck drivers. Sleep medicine, 3(6): 507–511. http://dx.doi.org/10.1016/S1389-9457(02)00138-7 Idris long, Norlinda Abd Rashid 28
  • Rajaratnam, S. M., Arendt, J. (2001). Health in a 24-h society. Lancet 358: 999– 1005. http://dx.doi.org/10.1016/S0140-6736(01)06108-6
  • Rattenbor g, N. C., Martinez-Gonzales, D., Roth T. C. 2ND, Pravosudov, V. V., (2011). Hippocampal memory consolidation during sleep: a comparison of mammals and birds. Biol Rev, 86(3): 658–691. http://dx.doi.org/10.1111/j.1469- 185X.2010.00165.x
  • Ri vas, M. R., Mellstrom, B., Torres, B., Cali, G., Ferrara, A.M., Terracciano, D., Zannini, M., de Escobar, G. M., Naranjo, J. R. (2004). The DREAM protein is associated with Thyroid enlargement and nodular development. Mol Endocrinol, 23(6): 1–9.
  • Robinson, D. E., Baiter, N. J., Schwartz, S. L. (1992). A Physiologically Based Pharlnacokinetic Model for Nicotine and Cotinine in Man. J Pharmacokinet Biopharm,20(6): 591–609. http://dx.doi.org/10.1007/BF01064421
  • Shibata, R., Nakahira, K., Shibasaki, K., Wakazono, Y., Imoto, K., Ikenaka, K. (2000) A-type K+ current mediated by the Kv4 channel regulates the generation of action potential in developing cerebellar granule cells. J Neurosci,20(11): 4145– 4155.
  • Roberson. E. D., Sweatt, J. D. (1999). A biochemical blueprint for long-term memory. Learn Mem,6(4): 381–388.
  • Roberson, E. D., English, J. D., Adams, J. P., Selcher, J. C., Kondratick, C., Sweatt, J. D. (1999). The mitogen-activated protein kinase cascade couples PKA and PKC to cAMP response element binding protein phosphorylation in area CA1 of hippocampus. J Neurosci, 19(11): 4337–4348.
  • Stickgold, R., (1998). Sleep: Of f-line memory reprocessing. Trends Cogn Sci 2(12): 484–492 http://dx.doi.org/10.1016/S1364-6613(98)01258-3
  • Salin-P ascual,R. J., Diaz-Munoz, M., Rivera-Valerdi, L., Ortiz-Lopez L., Blanco- Centurion,C., (1998).Decrease in muscarinic M2 receptors from synaptosomes in the pons and hippocampus after REM sleep deprivation in rats. Sleep Res. Online, 1(1): 19–23.
  • Samk off, J. S., Jacques, C. H., (1991). A review of studies concerning effects of sleep deprivation and fatigue on residents’ performance. Acad Med,66(11): 687– 693. http://dx.doi.org/10.1097/00001888-199111000-00013
  • T adavarty R., Rajput,P., Wong. J. M., Kumar, U., Sastry, B.R. (2001).Sleep- deprivation induces changes in GABA γ and mGluR Receptor expression and has consequences for synaptic Long-Term Depression. Plos One, 6(9): 1–13.
  • V an Dongen H. P., Maislin, G., Mullington, J. M., Dinges, D. F., (2003). The cumulative cost of additional wakefulness: Dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep,26(2): 117–126.
  • V ijayan, V. K., (2012).Morbidities associated with obstructive sleep apnea. Expert Rev Respir Med, 6(5): 557–566. http://dx.doi.org/10.1586/ers.12.44
  • W ang, S. X., Li, Q. S. (2002). Effects of sleep deprivation on γ-amino-butyric acid and glutamate contents in rat brain. Acad J First Med CollPLA, 22(10): 888–890.
  • W u, L. J., Mellstrom, B., Wang, H., Ren, M., Domingo, S., Kim, S. S., Li, X. Y., Chen, T., Naranjo, J. R., Zhuo, M. (2010). DREAM (Downstream Regulatory Element Antagonist Modulator) contributes to synaptic depression and contextual fear memory. Molecular Brain, 3(3): 1–13. http://dx.doi.org/10.1186/1756-6606-3-3
  • Xia, Z., Storm, D. R., (2012). Role of signal transduction crosstalk between aden ylyl cyclase and MAP kinase in hippocampus dependent memory. Learn Mem, 19(9): 369–374. http://dx.doi.org/10.1101/lm.027128.112