Antibiofilm Potential of Metal Based Nanoparticles: Synthesis and Mode of Action

  • R Kaur Department of Biotechnology and Bioinformatics, DAV, College, Sec-10, Chandigarh, India
  • M Khurana Department of Biotechnology and Bioinformatics, DAV, College, Sec-10, Chandigarh, India
  • R K Virk Department of Biotechnology and Bioinformatics, DAV, College, Sec-10, Chandigarh, India
  • A Sharma Department of Biotechnology and Bioinformatics, DAV, College, Sec-10, Chandigarh, India
Keywords: Biofilm, metals, Nanoparticles, Formulation methods

Abstract

Biofilm refers to a group of microbes colonizing together and often adhered to a surface. The adherence is attributed to secretion of polymeric substances comprising of extracellular DNA, proteins, and polysaccharides thereby limiting the access and inhibitory activity of existing antimicrobial agents. Biofilm are a major cause of acute infections and pose immense clinical threat especially in conditions employing the use of invasive devices thus being a major source of mortality and morbidity. Hence there is a dire need to develop alternative treatment against biofilm-related infections. Advances in nanotechnology has opened new horizons. Nanoparticles derived from various metal present promising candidates to ameliorate biofilms owing to their antioxidant potential.

References

Ahire, J., Hattingh, M., Neveling, D. P. and Dicks, L. M. (2016). Copper-Containing Anti-Biofilm Nanofiber Scaffolds as a Wound Dressing Material. PLoS ONE, 11(13). https://doi.org/10.1371/journal.pone.0152755
Ahmed, S., Ahmad, M., Swami, B. L., Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7, 17–28. https://doi.org/10.1016/j.jare.2015.02.007
Almagul, M., Khan, B., (2012). Noneluting Enzymatic Antibiofilm Coatings. ACS Appl Mater. Interfaces, 4 (9), 4708–4716. https://doi.org/10.1021/am3010847
Anna, M., Grudniak., Krystyna, I., Wolsk. (2013). Silver nanoparticles as an alternative strategy against bacterial biofilms. Jounal of Polish Biochemical Society, 60(4), 523–530.
Ansari, M. A., Khan, H. M., Khan, A. A., Cameotra, S. S., Alzohairy, M. A. (2015). Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Indian Journal of Microbiology, 33(1), 101–109. https://doi.org/10.4103/0255-0857.148402
Cramton, S. E., Gerke, C., Schnell, N. F., Nichols, W. W., Gotz, F. (1999). The Intercellular Adhesion (ica) Locus Is Present in Staphylococcus aureus and Is Required for Biofilm Formation. Infect Immun, 67(10), 5427–33.
Donlan, R. M. (2002). Biofilms: Microbial Life on Surfaces. Infect Dis., 8(9), 881–890. https://doi.org/10.3201/eid0809.020063
Emanuele, Z., Silvia, L., Raymond, J. T., Junaid, S. Q., Giovanni, V. (2015). Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Front. Microbiol., (6), 584.
Eszenyi, P., Sztrik, A., Babka, B., & Prokisch, J.(2011). Elemental, Nanosized (100-500 nm) Selenium Production by Probiotic Lactic Acid Bacteria. International Journal of Bioscience, Biochemistry and Bioinformatics, 1(2), 148–152. https://doi.org/10.7763/IJBBB.2011.V1.27
Fux, C. A., Costerton, J. W., Stewar, P. S., Stoodley, P. (2005). Survival strategies of infectious biofilms. Trends Microbiol., 13(1), 34–40. https://doi.org/10.1016/j.tim.2004.11.010
Ghasemian, E., Naghoni, A., Rahvar, H., Kialha, M., & Tabaraie, B. (2015). Evaluating the Effect of Copper Nanoparticles in Inhibiting Pseudomonas aeruginosa and Listeria monocytogenes Biofilm Formation. Jundishapur J Microbiol., 8(5), 17430. https://doi.org/10.5812/jjm.17430
Iravani, S., Korbekandi, H., Mirmohammadi, S. V., Zolfaghari, V. (2014). Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 9(6), 385–406.
Khan, S. T., Ahamed, M., Musarrat, J., Al-Khedairy, A. A. (2014). Anti-biofilm and antibacterial activities of zinc oxide nanoparticles against the oral opportunistic pathogens Rothiadentocariosa and Rothiamucilaginosa. European Journal of Oral Sciences, 122, 397–403. https://doi.org/10.1111/eos.12152
Kimling, J., Maier, M., Okenve, B., Kotaidis, V., Ballot, H., Plech, A., (2006). Turkevich Method for Gold Nanoparticle Synthesis. J. Phys. Chem. B, 110(32), 15700–15707. https://doi.org/10.1021/jp061667w
Kumar, A. G., Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biological-Res Pharm Sci. 26, 3995–4021.
Lee, J. H., Kim, Y. G., Cho, M. H., Lee, J. (2014). ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol Res., 169(12), 888–96. https://doi.org/10.1016/j.micres.2014.05.005
Lewis, O. F., Mubarak, A. D., Nithya, C., Priyanka, R., Gopinath, V., Alharbi, N. S., & Thajuddin, N. (2015). One pot synthesis and anti-biofilm potential of copper nanoparticles (CuNPs) against clinical strains of Pseudomonas aeruginosa. Biofouling. 31(4), 379–91. https://doi.org/10.1080/08927014.2015.1048686
Mahmood, G., Rhett, J. C., Jonathan, G. C. V., Kevin, J. W. (2013). The role of charge on the diffusion of solutes and nanoparticles (silicon nanocrystals, nTiO2, nAu) in a biofilm. Environmental Chemistry, 10(1), 34–41. https://doi.org/10.1071/EN12106
Panacek, A., Kvitek, L., Prucek, R., Kolar, M, Vecerovaa, R., & Nevecna, T. (2006). Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity. J. Phys. Chem. B. 110(33), 16248–16253. https://doi.org/10.1021/jp063826h
Pati R, Mehta RK, Mohanty S, Padhi A, Sengupta M, Vaseeharan B, et al. (2014). Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine, 10(6), 1195–208. https://doi.org/10.1016/j.nano.2014.02.012
Reza, H., Horbani, G. (2014). Review of Methods for Synthesis of Al Nanoparticles. Oriental Journal of Chem., 30(4), 1941–1949. https://doi.org/10.13005/ ojc/300456
Robert, A. W., Rodney, M. D. (2011). Biofilm Elimination on Intravascular Catheters: Important Clin Infect Dis., 52(8), 1038–1045. https://doi.org/10.1093/cid/cir077
Sakuragi, Y., and Kolter, R. (2007). Quorum-Sensing Regulation of the Biofilm Matrix Genes (pel) of Pseudomonas aeruginosa. J. Bacteriol., 189, 5383–5386. https://doi.org/10.1128/JB.00137-07
Salem, W., Deborah, R., Leitner, F. G., Zingl, G. S., Ruth, P., Goessler, W., Reidl, J., Stefan, S. (2015). Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int J Med Microbiol., 305(1), 85–95. https://doi.org/10.1016/j.ijmm.2014.11.005
Sara, M. S. (1999). Role of efflux pumps in the antibiotic resistance of bacteria embedded in a Biofilm. Infect Immun., 67(10), 5427–5433.
Stewart, P. S. (2002). Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol, 292(2), 107–13. https://doi.org/10.1078/1438-4221-00196
Sveltana, V. P., Jeffrey, B. K., Li, X., Wei, C., Xiaojun, Y., Srinivasa, M., Nandadeva, Y., Almagul, M., Khan, B., (2012). Noneluting Enzymatic Antibiofilm Coatings. ACS Appl. Mater. Interfaces, 4(9), 4708–4716. https://doi.org/10.1021/am3010847
Verma, P. (2015). A review on synthesis and their antibacterial activity of silver and selenium nanoparticles against biofilm forming Staphylococcus. World Journal of pharmacy and pharmaceutical Sci, 4, 652–677.
Wang, H., Zhang, J., Yu, H. (2007). Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: Comparison with selenomethionine in mice. Radical Biology and Medicine, 42, 1524–1533. https://doi.org/10.1016/j.freeradbiomed.2007.02.013
Zhang, J.,Wang, H., Yan, X., & Zhang, L. (2004). Comparison of short term toxicity between NanoSe and selenite in mice. Life Sciences, 76(10), 1099–1109.https://doi.org/10.1016/j.lfs.2004.08.015
Published
2018-04-02
Section
Articles