Gait Parameters As Early Indicators: Exploring the Diagnostic Potential of Gait Analysis in Rare Diseases – A Preliminary Investigation On Mitochondrial Disorders

Abstract

Background: Instrumented gait analysis is now increasingly used in clinical decision-making scenarios, as a marker of disease progression, as an early indicator of motor dysfunction, as a differentiating feature for diseases with same phenotype presentation and as an outcome measure for effect of interventions. This is particularly relevant for motor dysfunction in rare inherited neurological disorders which often result in gait impairment.

Purpose: Several rare diseases have variable presenting features primarily manifesting as reduced quality of life and impaired function. We aim to investigate the role of gait analysis in the diagnosis of these disorders as it is often difficult and complex.

Methods: This is a retrospective observational analysis of quantitative gait parameters of a 15-year-old male presenting with features of mitochondrial dysfunction, and our analysis of gait-related parameters before exercise, post exercise and in recovery phase.

Results: The results depicted a few significant changes in gait analysis pattern post exercise which improved in recovery phase hinting at the potential use of gait analysis in such disorders particularly metabolic disorders. This study aims to bridge this gap by presenting three-dimensional gait parameters of a case with mitochondrial disorders and to explore its utility.

Conclusions: 3D gait analysis may prove to be an adjunct in the diagnosis, classification and prognosis of rare neuromuscular diseases. It holds potential for diagnosing subtle changes in gait and quantifying the effect of treatment and rehabilitation on gait and hence functional abilities of the patients

  • Page Number : 59-65

  • Published Date : 2023-04-19

  • Keywords
    Gait analysis, 3D analysis, Mitochondrial diseases, Gait in rare diseases, Instrumented gait analysis

  • DOI Number
    10.15415/jmrh.2023.92006

  • Authors
    Somya Saxena

References

  • Chinnery, P. F., & Turnbull, D. M. (2001). Epidemiology and treatment of mitochondrial disorders. American journal of medical genetics, 106(1), 94-101.
  • Delval, A., Bleuse, S., Simonin, C., Delliaux, M., Rolland, B., Destee, A., ... & Dujardin, K. (2011). Are gait initiation parameters early markers of Huntington's disease in pre-manifest mutation carriers?. Gait & posture, 34(2), 202-207.
  • Galna, B., Newman, J., Jakovljevic, D. G., Bates, M. G., Schaefer, A. M., McFarland, R., ... & Rochester, L. (2014). Discrete gait characteristics are associated with m. 3243A> G and m. 8344A> G variants of mitochondrial disease and its pathological consequences. Journal of neurology, 261, 73-82.
  • Ramakers, R., Koene, S., Groothuis, J. T., de Laat, P., Janssen, M. C., &Smeitink, J. (2017). Quantification of gait in mitochondrial m.3243A > G patients: a validation study. Orphanet journal of rare diseases, 12(1), 91. https://doi.org/10.1186/s13023-017-0644-y
  • Indelicato, E., Raccagni, C., Runer, S., Hannink, J., Nachbauer, W., Eigentler, A., ... & Boesch, S. (2022). Instrumented gait analysis defines the walking signature of CACNA1A disorders. Journal of Neurology, 1-7.
  • Koene, S., Stolwijk, N. M., Ramakers, R., de Vries, M., de Boer, L., Janssen, M. C., ... &Smeitink, J. (2018). Quantification of gait in children with mitochondrial disease. Journal of Inherited Metabolic Disease: Official Journal of the Society for the Study of Inborn Errors of Metabolism, 41(4), 731-740.
  • MacWilliams, B. A., Carroll, K. L., Stotts, A. K., Kerr, L. M., & Schwartz, M. H. (2022). Discrimination between hereditary spastic paraplegia and cerebral palsy based on gait analysis data: A machine learning approach. Gait & Posture, 98, 34-38.
  • Maulet, T., Cattagni, T., Dubois, F., Roche, N., Laforet, P., &Bonnyaud, C. (2023). Determinants and characterization of locomotion in adults with late-onset pompe disease: new clinical biomarkers. Journal of Neuromuscular Diseases, (Preprint), 1-14.
  • Pradhan C, Wuehr M, Akrami F, Neuhaeusser M, Huth S, Brandt T, Jahn K, Schniepp R. Automated classification of neurological disorders of gait using spatio-temporal gait parameters. J ElectromyogrKinesiol. 2015;25:413–422. doi: 10.1016/j.jelekin.2015.01.004.
  • Ostergaard, J. R. (2021). Gait phenotype in Batten disease: a marker of disease progression. European Journal of Paediatric Neurology, 35, 1-7. Pau, M., Porta, M., Pau, C., Tacconi, P., & Sanna, A. (2023). Quantitative characterization of gait patterns in individuals with spinocerebellar ataxia 38. Bioengineering, 10(7), 788.
  • Pinzone, O., Schwartz, M. H., & Baker, R. (2016). Comprehensive non-dimensional normalization of gait data. Gait & posture, 44, 68-73.
  • Stephenson, J., Zesiewicz, T., Gooch, C., Wecker, L., Sullivan, K., Jahan, I., & Kim, S. H. (2015). Gait and balance in adults with Friedreich's ataxia. Gait & posture, 41(2), 603-607.