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Abstract Sleep deprivation has become a contributing factor to the world’s 
health concerns such as cardiovascular disease, mental illness and inattentiveness 
in occupationand decision making. It can also disturb synaptic plasticity that 
can lead to learning and memory impairment. Therefore, boosting cholinergic 
activity using acetylcholine imitator that can be found in the tobacco plant, 
known as nicotine, is essential in reversing the negative influences of sleep loss 
in the brain. Thus, studies on the effects of nicotine treatment on molecular 
mechanisms and structural changes of hippocampal brain cells are vital in order 
to gain more understanding and to overcome the detrimental consequencesof 
learning and memory impairment related to sleep divest.
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INTRoDucTIoN

Numerous people in our society today are unable to obtain sufficient sleep 
on a daily basis. Social and occupational demands cause them additional 
pressure to sacrifice sleep in order to meet urbanisation lifestyles and to 
increase productivity. Chronic sleep loss is associated with chronic problem 
such as heart disease, kidney disease, high blood pressure, diabetes, obesity 
and mental illness [21, 26, 31, 33, 43, 44, 60]. In addition, the loss of sleep 
can also contribute to irritability, aggression, inattentiveness and diminished 
psychomotor vigilance [34, 48, 59]. Therefore, it is critical to understand the 
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molecular and cellular impact of sleep loss on the brain especially hippocampus 
as an effort to identify novel therapeutic approaches to counteract these 
effects.

categories of Sleep

Sleep can be categorized as non-rapid eye movement (NREM) sleep and rapid 
eye movement (REM) sleep [55]. These states of sleep are identified and 
classified based on variouselectrophysiological signals electroencephalogram 
(EEG) recorded from the brain and neck as well as the eye muscles [39]. NREM 
sleep is known as slow wave sleep (SWS) due to its synchronous slow-oscillation 
of membrane potentials in neurons of neocortex area [49]. REM sleep, being an 
important component of sleep, is also known as active sleep, desynchronized 
sleep, or paradoxical sleep and is characterised by a desynchronised pattern, 
high frequency low amplitude waves in electroencephalogram, rapid eye 
movements and atonia in antigravity muscles [39].

REM Sleep Deprivation Models

Three primary techniques that have been employed to deprive laboratory rats 
of sleep. The first is the platform-over-water, pedestal or known as flower pot 
method which is the best method to selectively deprive animals of REM sleep 
for one or multiple days with only minimum monitoring [32]. The animals are 
placed in a chamber with one or multiple small platforms surrounded by water. 
REM sleep is prevented by the muscular atonia in which the rats are awakened 
when their bodies come into contact with water. For the control group, each 
rat was placed in the same experimental condition as REM sleep deprivation 
model except that the diameter of the platform was larger which allowed REM 
sleep to occur.

The second method utilizes forced locomotion, in which the animal is 
placed in a chamber with a revolving floor or rotating drum that forces the 
animal to reposition itself with each revolution [15]. Control animals can be 
manipulated to move as deprived animals but with longer periods of rest in 
between in order to prevent excessive sleep loss. The third method is based 
on gentle handling or mild stimulation. Researchers will make noises, gently 
jostle the animal’s home cage, and disturb the animal’s nesting material and 
in some cases stroke the animal [28]. However, the disadvantage of gentle 
handling technique is, it requires constants vigilance by the researcher and it 
cannot be performed over a long period of time.
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REM Sleep Deprivation and Impairment of Learning and Memory

Previous reports revealed that sleep contributes significantly to the process 
of memory and neural plasticity [40, 45, 57]. It is also known that adequate 
sleep is essential for fostering connections among neuronal networks for 
memory consolidation in the hippocampus [41]. In fact, hippocampal activity 
is increased during sleep after a learning task [24, 25].

Formation of memoryin the brain consists of at least three stages: 
encoding, consolidation and retrieval [2]. Sleep is particularly beneficial to the 
consolidation stage of memory storage. Manipulation of sleep during this stage 
will affect the consolidation of memory.The process of learning begins with a 
transient increase in calcium ions and adenylyl cyclase, an enzyme responsible 
for the production of the second messenger, cyclic adenosine monophosphate 
(cAMP) [63]. The second messenger cAMP activates downstream kinases such 
as calmodulin-dependent protein kinase (CAMKII), mitogen activated protein 
kinase (MAPK) and extracellular signal-regulated kinase (ERK1/2) leads to 
phosphorylation of transcription factor [3,53]. The transcription factor such as 
cAMP response element binding protein (CREB), promotes up-regulation of 
gene expression for a protein that will consolidate labile memories into long-
term memories [53]. Therefore, hippocampus dependent memory consolidation 
(formation and working memory) is particularly sensitive to sleep deprivation.

REM Sleep Deprivation and Hippocampal Synaptic Plasticity

Long-term potential (LTP) and long-term depression (LTD) are forms of 
hippocampal synaptic plasticity. Sleep deprivation has generally been shown 
to attenuate the LTP in the hippocampus. McDermott and his colleagues [41]
reported that the disturbance in NMDA receptor function can lead to the LTP 
deficits observed after chronic periods of sleep deprivation and administration 
of glycine, which enhances N−methyl-d-aspartate (NMDA) receptor 
function, reversed the effects. NMDA receptors belong to ionotropic (ligand-
gated ion channel) glutamate receptors. Glutamate (the primary excitatory 
neurotransmitter in the central nervous system), will bind to the glutamate 
receptors and permits the flow of positive ions (Ca2+, Na+) into the cell, creating 
an excitatory  postsynaptic potential (EPSP), a temporary depolarization of 
postsynaptic membrane potential caused by the flow of positively charged ions 
into the postsynaptic cell [42]. The glutamate receptors can be divided into two 
broad categories, metabotropic (G-protein-linked) receptors and ionotropic 
(ligand-gated ion channel) receptors. Ionotropic receptors are further classified 
into three major subtypes known as NMDA, AMPA (alpha-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid), and kainite [37].
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In contrast to the attenuation of LTP, REM sleep deprivation for 12 hours 
using gentle handling has been shown to enhance LTD in hippocampal slice 
accompanied by elevated expression of γ-aminobutyric acid (GABA

γ
) and 

metabotropic glutamate 1γ receptors in hippocampus [58]. Compared to the 
glutamate, GABA receptors exert an inhibitory influence on postsynaptic 
neurons, and can be categorised into two major types, the GABA

A
 and the 

GABA
B
 receptors. GABA

B 
(a metabotropic class receptors) are working through 

second-messenger systems, as they increase the permeability of the ion channels 
that permit K+ to exit the cell, reduce the influx of Na+ and/or Ca2+ into the cell, 
and inhibit the formation of cyclic AMP by inhibiting adenylyl cyclase, the 
enzyme responsible for converting ATP into cyclic AMP. All these effects are 
inhibitory in nature [42]. Thus, the function of NMDA and γ-aminobutyric acid 
(GABA

γ
) receptors in the hippocampus appears to be an important contributor 

to modulate the hippocampal plasticity after sleep deprivation.

REM Sleep Deprivation and NMDA Receptor

NMDA receptor activity plays a significant role in all three stages of memory, 
especially the consolidation phase where the memory from the labile form 
transforms to a more stable permanent form [30]. Sleep deprivation has been 
shown to impair proper activation of this glutamate receptor type through 
altering receptor subunit composition, surface expression and reduced calcium 
influx [17]. McDermott et al., 2006 found that prolonged sleep deprivation for 
72 hours reduced the NMDA/AMPA receptor ratio in CA1 pyramidal cells in 
response to Schaffer collateral stimulation. NMDA receptor mediated currents 
from the distal dendrites of CA1 cells causing reduced amplitude due to the 
reduced surface expression of NMDA receptors after sleep deprivation [41]. 
The disruption ofthe NMDA receptor trafficking to the cell surface and the 
reduction in NMDA in the receptor mediated current were also observed after 
24 hours of sleep deprivation [18]. Thus, NMDA receptor function is needed 
for plasticity and memory and longer periods of sleep deprivation disrupt 
NMDA receptor function and impair both plasticity and memory.

REM Sleep Deprivation and DREAM Protein

DREAM protein is a Ca2+-binding protein of the EF-hand subfamily of 
neuronal calcium sensors. It is multifunctional and has a highly significant role 
in the various cell compartments [14]. In the nucleus, DREAM acts as a Ca2+-
dependent transcriptional repressor that regulates gene expression [16, 35, 36, 
50]. While on the outside of the nucleus; it interacts with A-type potassium 
channels Kv4, which are voltage-gated potassium channels, directing their 
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traffic to the plasma membrane and regulating channel gating properties [8, 
52]. These channels are concentrated at somatodendritcally that act as crucial 
regulators of postsynaptic excitability and modulators of synaptic plasticity. 
In this particular context, DREAM is recognized as a potassium channel γ 
subunit interacting protein (KchIP3).

DREAM protein has been demonstrated to be involved in the mechanism 
of learning and memory by functioning as a transcriptional repressor for CREB 
in a Ca2+-dependent manner. Knockout DREAM gene mice have been reported 
to facilitate the CREB gene transcription and enhance learning and memory 
performance [22]. A study using transgenic mice overexpressing a Ca2+-
insensitive DREAM mutant (TgDREAM) found that DREAM protein played 
a role in postsynaptic modulation of the NMDA receptor and contributed to 
synaptic plasticity and also behavioural memory [62]. The mice lacking the 
DREAM protein were found to facilitate the learning and memory process by 
decreased potassium A current (I

A
). The results were comparable when the 

mice were treated with 4-aminopyridine (4-AP, 1mg/kg i.p) (I
A
inhibitor). The 

decreased potassium A current (I
A
) has been shown to require the activation 

of NMDA receptors containing the NR2B subunit to facilitate the learning 
and memory process [23]. All these findings suggest that Kv4.2, DREAM 
protein and NMDAR protein are integral components of interacting complex 
that regulates the synaptic efficacy mediating synaptic plasticity and learning 
via NMDARactivation.

REM Sleep Deprivation and cholinergic Receptor

The cholinergic system has a significant role in memory formation [20] and 
a major modulator of neuronal activity [12]. It has been reported that REM 
sleep deprivation for 96 hours increases acetylcholinesterase, an enzyme that 
breaks down acetylcholine and reduces muscarinic M2 cholinergic receptors 
in the pons and hippocampus [56]. Sleep depression for 72 hours has also 
been reported to increase GABA receptors [61] which lead to the increase in 
GABAergic signaling and a suppression of the activity of excitatory neurons. 
It’s believed that increased GABAergic activity after sleep deprivation 
reduces the cholinergic activity and impairs the memory formation.

Therefore, many efforts have been made to boost the cholinergic activity 
with the aim to reverse the effects of sleep deprivation on memory formation. 
Systemic administration of nicotine has been found to prevent memory deficit 
in the hippocampus-dependent radial arm maze task after 24 and 48 hours of 
REM sleep deprivation, using the platform over water method, [4, 6]that were 
suggested by the activation of nicotinic acetylcholine receptors particularly 
the γ7nAch receptor. Nicotine treatment has also been shown to reverse the 
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impairment in hippocampus synaptic plasticity (LTP) in CA1 and dentate gyrus 
regions [6]. However, in what way nicotine treatment can prevent learning and 
memory impairment after sleep deprivation is still unclear.

Nicotine

Nicotine imitates the action of acetylcholine (a natural neurotransmitter) and 
binds to a particular type of acetylcholine receptor, known as the nicotinic 
receptor. Whether it is ACh or nicotine that binds to the nicotinic receptor, they 
respond in the same manner, by changing the nicotinic receptors and causes 
ion channel to open (for few seconds). The yallow Na+ to enter the neuron, 
which depolarizes the membrane and exciting the cell [19]. Then, the channel 
closes again, and the nicotinic receptor becomestemporarilyunresponsive to 
any neurotransmitters (desensitization) [19].

History, Structure and Metabolites

Nicotine is an alkaloid found in the nigshade family of plants (“solanaceae”) 
which constitutes approximately 0.6-3.0% of the dry weight of tobacco, with 
biosynthesis taking place in the roots and accumulating in the leaves [1]. It 
is named after the tobacco plant called “nicotianatobacum” which in turn is 
named after Jean NicotDevillemain, a French ambassador to Portugal, who 
sent tobacco and seeds from Brazil to Paris in 1560 and promoted their 
medicinal use [1]. Nicotine was first isolated from the tobacco plant in 1828 by 
German chemists Posselt and Reinmann, and its chemical empirical formulas 
C

5
H 

7
N was described by Melsens in 1843, while its structure was discovered 

by Garry Pinner in 1893 as C
10

H
14

N
2
, and it was first synthesized by Apictet 

and Crepieux, in 1904 [1].
Nicotine is distilled from burning tobacco and carried proximally on tar 

droplets, which are inhaled. Absorption of nicotine across biological membranes 
depends on pH (better absorbed in the pH of 6.5 and above) [10]. Nicotine is 
rapidly absorbed when tobacco smoke reaches the small airways and alveoli of 
the lung (through pulmonary venous circulation, from which it moves quickly 
to the left ventricle of the heart and to the systemic arterial circulation).Then 
the nicotine blood concentrations will rise rapidly and peak at the completion 
of smoking, and reach the brain in 10-20 seconds [10]. Nicotine binds to the 
brain tissues with high affinity, and the receptor binding capacity is increased 
in smokers compared with non-smokers [13, 46], owing to a higher number of 
nicotinic cholinergic receptors in the brain of the smokers [10].

Blood or plasma nicotine concentrations sampled in smokers generally 
range from 10 to 50 ng per ml, whereas the peak level of blood nicotine 
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will decline rapidly inthe next 20 min due to tissue distribution. Besides,the 
plasma half-life of nicotine after intravenous infusion or cigarette smoking 
averages about 2 hours [10]. Nicotine is extensively metabolized to a number 
of metabolites by the liver, the most important metabolite in most mammalian 
species is the lactam derivative, which is known as cotinine (in humans, about 
70–80% of nicotine is converted to cotinine) [10, 51].

Cotinine is present in the blood of smokers in much higher concentrations 
than those of nicotine, averaging about 250–300 ng per ml in the groups of 
cigarette smokers, and after stopping smoking, the levels decline in a log 
linear fashion with an average half-life of about 16 hours [10]. The presence 
of cotinine in biological fluids indicates exposure to nicotine, due to the long 
half-life it has been used as a biomarker for daily intake, both in cigarette 
smokers and in those exposed to second-hand tobacco smoke [9]. Based 
on the work of Jarvis and his co-workers, who measured cotinine levels in 
individuals attending outpatient clinics in the United Kingdom in the early 
1980s, an optimal plasma cotinine cut-point of 15 ng ml−1 were determined 
to discriminate smokers from non-smokers (some of whom are exposed to 
second-hand smoke) [11]. Thus, it is vital to measure the blood cotinine level 
in the subjects of this study to confirm that the subjects have the standard 
exposure to the nicotine as the chronic smoker does.

Possible mechanism of nicotine treatment

Nicotine treatment has been suggested to activate pre-synaptic nicotine 
receptors that lead to the increase of glutamate release from the pre-synaptic 
terminal and as consequences increase the activity of excitatory neurons [27]. 
Nicotine treatment could also facilitate the activity of excitatory neurons 
through desensitization of γ7nAch in GABAergic neuron and reduce the 
release of GABA [35]. In addition to that, chronic nicotine treatment has been 
demonstrated to reverse stress-induced reductions in protein levels of the 
Brain-Derived Neutrophic Factor (BDNF) [5], a key protein in hippocampal 
synaptic plasticity [38]. Thus preventing sleep depression induced impairment 
in memory using nicotine is an excitingfinding. Having said that, how 
nicotine treatment ameliorates sleep depression induced learning and memory 
impairment is still elusive and needs further investigation to elucidate the 
molecular mechanism.

coNcLuSIoN AND FuTuRE DIREcTIoN

In brief, there is an increased frequency of nicotine consumption in REM 
sleep deprivation smokers and the initiation of smoking among non-smokers 
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during REM sleep deprivation [29, 47]. This scenario might be a form of self-
medication as acute nicotine treatment prevented REM sleep deprivation induced 
impairment of short-term memory and synaptic plasticity of hippocampal CA1 
[4]. Although there is a wealth of evidence that proved nicotine treatment 
attenuates the impairment of learning and memory, the protective effect 
mechanism of nicotine that improves REM sleep deprivation induced learning 
and memory impairment remain uncertain. Previous studies have proven that the 
negative effects of REM sleep deprivation can be reversed by taking low dosage 
of brain stimulant such as nicotine. Nevertheless, the molecular mechanism of 
how the ‘reversible effect’ is still under-explored. While REM sleep deprivation 
prevents long term potentiates (LTP) of neuron in hippocampus and affected 
molecular expression of certain receptors and proteins such as NMDA receptors, 
GABAergic receptors, BDNF, p-CREB and DREAM protein, the relationship 
of these receptors and proteins when nicotine is administered in REM 
sleep deprivation model has yet to be discovered. There is also very limited 
literature on the ultra-structural changes of the hippocampal cell in REM sleep 
deprivation and none on REM sleep deprivation nicotine treatment. Therefore, 
this information is vital and it may serve the basic facts in understanding the 
physiological process of REM sleep deprivation and how nicotine could reverse 
the learning and memory impairment of REM sleep deprivation.
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