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ARTICLE INFORMATION ABSTRACT

Received: July 25, 2025 Background: A8-Tetrahydrocannabinol (A8-THC) is a psychoactive cannabinoid compound
Revised: August 21, 2025 naturally occurring in the Cannabis sativa plant. The commercial A8-THC products are typically
Published Online: September 30, 2025 synthesized from cannabidiol (CBD), which may lead to the formation of various impurities.

These impurities may contribute to unintended pharmacological or toxicological effects,
highlighting the need for comprehensive safety assessment.

Keywords:
A8-THC, ADMET, Cannabinoid impurities, Purpose: This study aims to assess the pharmacokinetic and toxicity profiles of A8-THC and
In-silico its structurally related impurities using in silico methods, thereby providing preliminary safety

insights before in vitro or in vivo experimentation.
Method: In silico ADMET predictions were performed using the pkCSM web server.

Results: All analyzed compounds possess good membrane permeability and showed favorable
values for intestinal absorption. The skin permeability values were within acceptable limits,
with the exception of compound 10 (log Kp value -2.443). This suggests that compound 10 may
have significantly reduced dermal permeability. All compounds were also predicted to exhibit
high Caco-2 cell permeability. Compounds 3, 6, 7, 8, 9 (0.704, 0.542, 0.531, 0.531, 0.648), and
11 (0.227) showed relatively low VDss values. This could influence their duration of action
and tissue-specific effects. All the compounds are unlikely to penetrate the blood-brain barrier
(BBB), based on predicted log BB and CNS permeability indices. Our predictions indicate that
impurities 6, 7, 8, 10, and 12 have the potential to inhibit the hERG channel, flagging them as
possible cardiotoxic agents.

Conclusion: A8-THC and its structurally related impurities exhibited favorable absorption
and distribution characteristics; variations in volume of distribution and dermal permeability,
particularly for compound 10, may influence their pharmacological behavior. The predicted
hERG inhibition by impurities 6, 7, 8, 10, and 12 raises potential cardiotoxicity concerns. Future
work should include in vitro and in vivo validation of these predictions, as well as expansion to
include additional impurities formed under various synthetic and storage conditions.
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1. Introduction legal permissibility under certain regulatory frameworks.
However, the synthesis of A8-THC from CBD is a complex

Delta-8-tetrahydrocannabinol (A8-THC) is a psychoactive chemical reaction that often leads to the formation of

cannabinoid that has garnered significant attention in recent . . o
numerous by-products and structural isomers as impurities

years due to its pharmacological similarities to A9-THC, (Mechan-Atrash et al, 2021; Thomas & Pollard, 2018)
the principal psychoactive component of Cannabis sativa ) ’ ' .

(EISohly ez al., 2017). Although A8-THC is one of over 100

cannabinoids naturally produced by the cannabis plant, it is

These impurities are seldom removed completely and may
remain in final commercial products. Their presence has
raised growing concerns regarding the toxicological safety and

typically found in trace amounts. Consequently, most A8- pharmacological effects of A8-THC formulations, especially

THC used in commercial products is synthetically derived as many of these products are marketed with limited quality

through the chemical transformation of hemp-derived . . .
control, regulatory oversight, or clinical evaluation.

cannabidiol, a process that has gained popularity due to its
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As A8-THC-based products become more widespread,
there is an urgent need for comprehensive toxicity profiling,
not only of the active pharmaceutical ingredient (API), but also
of its associated impurities (Poklis ez al., 2022; Snyder ez a4l.,
2001). The toxicity of a drug product is frequently influenced
by structurally related impurities, some of which may be
genotoxic, carcinogenic, or cardiotoxic (Jamei ez al., 2019; Li,
2001; Van de Waterbeemd & Gifford, 2003). Recognizing
this, several international regulatory authorities, including the
U.S. FDA, EMA, and ICH, have established guidelines for the
identification, quantification, and control of impurities in both
pharmaceutical substances and finished products. In particular,
the control of genotoxic and structurally alerting impurities has
become a key concern in preclinical safety assessment (Gleeson
et al., 2011). One of the most promising approaches for early-
stage toxicity evaluation is the use of in silico predictive models,
which enable researchers to estimate ADMET (Absorption,
Distribution, Metabolism, Excretion, and Toxicity) properties
of chemical compounds using computational tools (Pires ¢z al.,
2015; Ekins er al., 2017). Among these, the pkCSM platform
(Mohammad ez al., 2023) has proven effective for predicting
pharmacokinetic and toxicological endpoints based on graph-
based molecular signatures. Such models allow for cost-effective,
rapid screening of numerous compounds, providing valuable
insights into their biological behavior prior to empirical testing
(Radwan et al., 2023).

In this study, we perform an in silico ADMET and
toxicity evaluation of A8-THC and eleven structurally
related impurities, designated as compounds 1 through 12,
respectively (Figure 1). These impurities were previously
isolated and structurally characterized using a combination
of chromatographic and spectroscopic techniques (Radwan
et al., 2023). 'Their structures include a variety of A8-THC
isomers, hydroxylated and epoxidized derivatives, and known
cannabinoids such as A9-THC and cannabicitran. The
structural diversity of these compounds offers an excellent
framework for exploring structure—toxicity relationships
(STRs) and understanding how minor changes in molecular
configuration influence pharmacokinetic behavior and
toxicity profiles (pkCSM, n.d.). Through this analysis,
we aim to contribute to the improvement of drug quality
control standards for cannabinoid-based therapeutics and to
support regulatory science by identifying potentially harmful
compounds within A8-THC formulations. The outcomes
of this study can also be extended to guide the evaluation
of impurities in other synthetically derived phytochemicals.

2. Materials and Methods

2.1. Overview of Computational Approach
Computer-Aided Drug Design (CADD) has emerged

as a powerful approach in modern drug discovery and

toxicity prediction. Compared to traditional experimental
techniques, CADD enables high-throughput screening of
chemical entities with significantly reduced time, cost, and
resource requirements. In particular, in silico prediction of
pharmacokinetic properties such as absorption, distribution,
metabolism, excretion, and toxicity (ADMET) plays a
pivotal role in identifying promising lead compounds and
eliminating potentially harmful candidates early in the
development pipeline (Zhang et al., 2025).
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Figure 1: Chemical Structures of AS-THC (1) And Structurally
Related Impurities (2-12) Identified in Commercial Cannabinoid
Products

2.2. Selection of Compounds

A total of twelve chemical compounds were selected for
this study, comprising A8-tetrahydrocannabinol (A8-THC)
as the reference compound (compound 1) and eleven
associated impurities (compounds 2-12), previously isolated
and characterized. These impurities include various isomers
and degradation products of A8-THC, such as A4,8-iso-
THC, A9-THC, o-olivetol, and hydroxylated or epoxidized
derivatives. The chemical structures of these compounds
were retrieved or drawn manually using cheminformatics
software and optimized prior to ADMET evaluation
(Radwan et al., 2023).

2.3. Molecular Descriptor Considerations

The pharmacokinetic behavior of small molecules is
governed by several key physicochemical properties. The
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Lipinski Rule of Five (Lipinski, 2004), a widely used drug-
likeness filter, states that orally active drugs are more likely to
meet the following criteria: molecular weight (MWT) < 500
Da, LogP (octanol-water partition coefficient) < 5, number
of hydrogen bond donors < 5, and number of hydrogen
bond acceptors < 10. These parameters are closely associated
with aqueous solubility, intestinal permeability, and oral
bioavailability. Additional molecular descriptors, such as
topological polar surface area (TPSA), number of rotatable
bonds, and skin permeability, are also crucial in evaluating
a compound’s ability to cross biological membranes and
interact with metabolic enzymes or receptors.

2.4. ADMET Prediction using pkCSM

The pkCSM web server (http://biosig.unimelb.edu.au/
pkesm/) was used to predict ADMET profiles of the selected
compounds. pkCSM employs a graph-based machine
learning approach to estimate over 25 pharmacokinetic and
toxicity-related endpoints using molecular structure as input.
The SMILES (Simplified Molecular Input Line Entry System)
representations of each compound were uploaded to the
pkCSM server, and the following parameters were assessed:
Absorption: water solubility (log S), Caco-2 permeability,
human intestinal absorption (HIA), skin permeability (log
Kp), and P-glycoprotein substrate/inhibitor prediction.
Distribution: volume of distribution at steady state (VDss),
blood-brain barrier (BBB) permeability, and central nervous
system (CNS) permeability. Metabolism: interaction with
cytochrome P450 (CYP) enzymes, including CYP3A4 and
CYP2D6 substrates/inhibitors. Excretion: total clearance and
renal OCT?2 substrate status. Toxicity: Ames mutagenicity,
hERG I/II inhibition (cardiotoxicity), hepatotoxicity, and
skin sensitization. The results were exported and analyzed
to identify key pharmacokinetic risks or potential liabilities
among the tested impurities.

2.5. Rationale for In-Silico Evaluation

The use of insilico tools such as pkCSM enables rapid screening
of candidate molecules and associated impurities without the
need for extensive laboratory testing. This approach provides
an early estimation of the drug-likeness, toxicity, and safety
profile of unknown or novel compounds. In the context of A8-
THC and its manufacturing by-products, such predictions are
essential for guiding regulatory assessment, ensuring consumer
safety, and enhancing product quality control standards.

3. Results and Discussion

Physicochemical, pharmacokinetic (ADME), metabolic,
and toxicological properties of A8-THC (Compound 1)

and its structurally related impurities (Compounds 2-12)
were evaluated using the pkCSM in silico model to predict
their drug-likeness, absorption, distribution, metabolism,
excretion, and potential toxicological risks. The ADMET
properties of A8-THC and its eleven known impurities
were predicted using the pkCSM web server. These in silico
evaluations provide insights into the pharmacokinetic and
toxicity profiles of the compounds, which are essential for
assessing their potential safety and bioavailability (Gallardo
et al., 2024). Below, we present a detailed analysis of each
ADMET parameter.

3.1. Physicochemical Properties

The physicochemical properties of A8-THC (Compound
1) and its structurally related impurities (Compounds
2-12), as predicted by pkCSM and summarized in Table 1.
All twelve compounds exhibited molecular weights below
500 Da, satisfying one of the criteria of the Lipinski Rule
of Five, which predicts good oral bioavailability. Lower
molecular weight generally enhances membrane diffusion,
cellular transport, and solubility. As molecular weight
increases, steric bulk and molecular volume also increase,
often reducing permeability and transport efficiency. The
hydrogen bond donor (HBD) and acceptor (HBA) counts
were within acceptable ranges for all compounds, with
HBDs ranging from 0 to 2 (<5) and HBAs ranging from
2 to 3 (<10). These values suggest that the compounds are
capable of forming hydrogen bonds while still maintaining
suitable membrane permeability. Topological polar surface
area (TPSA) was another key indicator analyzed. Most
compounds displayed TPSA values exceeding 140 Az,
indicative of relatively high polarity. Notably, compounds
10 (Olivetol) and 11 (A9-THC) had lower TPSA values,
suggesting better membrane absorption and increased oral
bioavailability compared to the more polar compounds.

In general, compounds with TPSA > 140 A2 may
face absorption challenges through biological membranes.
The number of rotatable bonds is indicative of molecular
flexibility, which contributes to favorable binding
interactions in biological targets (Al-Azzam, 2022). All
compounds were within acceptable flexibility ranges.
In particular, flexible molecules often exhibit better
adaptability to enzyme and receptor binding sites. AlogP
values were used to estimate lipophilicity. Compounds 6,
7, 8, and 11 exhibited ideal lipophilicity with AlogP < 5,
aligning with known favorable membrane interactions.
However, the remaining compounds showed higher AlogP
values (>5), which may suggest poor aqueous solubility and
increased risk of nonspecific binding or toxicity. An optimal
balance between hydrophilicity and lipophilicity is crucial
for ensuring proper absorption, distribution, and clearance.
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Table 1: Physicochemical Properties of A>-THC (Compound 1) and Structurally Related Impurities (Compounds 2-12) Predicted by pkCSM

Compound No. L;zif;“ul]:‘ MW | HBD | HBA | nrotb | LogP | Surfacearea

1 C H,0, 314.46 2 4 5.7358 140.112
2 C,H,0, 314.46 2 4 5.8799 140.112
3 C,H,0, | 314.469 2 5 5.7358 140.112
4 C,H,0, | 314.469 2 5 5.7358 140.112
5 C,H,0, | 330.468 3 4 5.0911 144.909
6 C,H,0, | 332.484 3 5 4.9306 145.596
7 C,H,0, | 332.484 3 4 4.9306 145.596
8 C,H,0, | 332.484 3 4 4.9306 145.596
9 C,H,0, | 314.469 2 5 5.7358 140.112
10 C,H,0, | 300442 2 4 5.235 133.75

11 C,H,0, | 180.247 2 4 2.8305 78.845

12 C,H,0, | 314.469 2 4 5.7358 140.112

3.2. Absorption

The absorption parameters (Table 2) considered include
Caco-2  permeability, human absorption,
skin permeability (log Kp), and P-glycoprotein (P-gp)
interaction. All compounds demonstrated high predicted
Caco-2 permeability (Papp > 0.90), indicating strong
potential for passive intestinal absorption. Human intestinal
absorption (HIA) for all compounds was also predicted
to be above 30%, confirming good oral absorption across

intestinal

the series. Skin permeability (log Kp) values were generally
acceptable (> -2.5), except for compound 10, which

Table 2: Absorption Properties of the Selected Compounds

showed reduced skin permeability (log Kp = -2.443). This
suggests that most compounds can be absorbed through
the skin, potentially relevant in transdermal formulations
or accidental exposure. P-glycoprotein plays a crucial role
in drug efflux and can impact oral bioavailability and
blood-brain barrier permeability. Interestingly, all tested
compounds were predicted to be P-gp substrates, indicating
a likelihood of active efflux from cells. This may reduce
and

efficacy, particularly in CNS or cancer-related applications
(Domarnski et al., 2023).

intracellular accumulation influence therapeutic

Caco2 Intestinal .
Water . . Skin . . .
Compound .. permeability | absorption ... | p-glycoprotein |p-glycoproteinI| p-glycoprotein II

solubility . o, |Permeability M L1

“ no (log mol/L) (log Papp in | (human)% (log Kp) substrate inhibitor inhibitor

£ g 10 cm/s) (Absorbed) g

& 1 -5.552 1.057 93.6 2.814 No Yes No
= 2 -5.801 1.275 92.813 -2.765 No Yes No
3 -5.754 1.158 92.629 -2.765 Yes No No
4 -5.59 1.151 92.755 -2.778 Yes No No
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5 -4.977 1.275 92.902 -3.243 Yes Yes No
6 -4.045 1.414 92.501 -3.085 Yes No No
= 7 -4.811 1.377 92.656 -3.504 Yes Yes No
'}% 8 -4.811 1.377 92.656 -3.504 Yes Yes No
_g 9 -5.385 1.012 91.515 -2.643 Yes Yes No
< 10 -5.778 1.167 95.788 -2.443 No Yes No
11 -2.735 1.132 - -2.899 Yes No No
12 -5.673 1.146 93.176 -2.581 No Yes No

3.3. Distribution

The steady-state volume of distribution (VDss) helps
estimate how widely a drug diffuses into body tissues.
Table 3 presents the distribution properties of the selected
compounds. Based on the predictions, Compounds 3, 6,
7,8, 9, and 11 exhibited low VDss values (< 0.71 L/kg),
suggesting that they are more likely to remain confined
to the blood plasma and may have shorter half-lives.
Other compounds showed moderate to high VDss values,
indicating broader tissue distribution, which could impact

Table 3: Distribution Properties of the Selected Compounds

both efficacy and toxicity. Blood—brain barrier permeability
(logBB) and CNS permeability (logPS) were also predicted:
Compounds 5-9 and 11 had logBB < 0.3, suggesting limited
ability to cross the blood-brain barrier (BBB). In contrast,
the other compounds may potentially penetrate the CNS.
However, all compounds, including A8-THC, showed
logPS < -3, indicating limited CNS permeability. This
suggests that while some molecules may reach the brain,
they may not readily cross into central compartments at
pharmacologically significant levels, potentially due to P-gp
efflux or limited lipophilicity (Onyango et al., 2024).

Compound No. | VDss (human) (log | Fraction unbound | BBB permeability | CNS permeability
L/kg) (human) (Fu) (log BB) (log PS)
1 0.798 0 0.387 -1.703
2 0.818 0 0.375 -1.693
3 0.704 0 0.508 -1.268
“ 4 0.795 0.002 0.467 -1.585
§ 5 0.717 0.049 -0.077 -2.038
':§ 6 0.542 0.038 -0.233 -1.834
a 7 0.531 0.058 -0.212 -1.784
8 0.531 0.058 -0.212 -1.784
9 0.648 0 0.711 -1.725
10 0.894 0 0.488 -2.14
11 0.227 0.354 0.17 -1.685
12 0.864 0.02 0.569 -2.118

3.4. Metabolism

Metabolic prediction (Table 4) focused on interactions
with cytochrome P450 enzymes, particularly CYP2D6 and
CYP3A4, which are responsible for the metabolism of most
clinical drugs. The findings indicated moderate interaction

across the series, without strong inhibition or induction
patterns. Total drug clearance, which reflects the rate of
elimination, was highest for compound 4, suggesting a faster
systemic removal compared to other impurities. Clearance is
often influenced by hydrophilicity, metabolic stability, and
molecular weight (Zanger & Schwab, 2023).

Table 4: Metabolism Properties of A>-THC (Compound 1) and Structurally Related Impurities (Compounds 2-12) Predicted by pkCSM

Compound CYP2D6 CYP3A4 CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4
No. substrate substrate inhibitior inhibitior inhibitior inhibitior inhibitior
1 No Yes Yes No No Yes
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2 No Yes Yes Yes No No Yes
3 No Yes Yes No No No No
4 No Yes Yes Yes No No No
5 No Yes No Yes No No No
S 6 No Yes No No No No No
:2 7 No Yes Yes Yes No No No
§ 8 No Yes Yes No No No No
9 No Yes Yes Yes No No Yes
10 No Yes No Yes No No No
11 No No Yes No Yes No Yes
12 No Yes Yes Yes No No No

3.5. Excretion
The predicted excretion profiles of A>-THC (Compound 1)

and its structurally related impurities (Compounds 2-12),
as presented in Table 5, demonstrate moderate to low total
clearance values, ranging from 0.349 to 1.04 log ml/min/
kg. Compound 4 exhibited the highest predicted clearance
(1.04), suggesting a potentially faster elimination rate
compared to the other compounds. In contrast, Compound

11 showed the lowest clearance (0.349), indicating a
slower excretion rate. Notably, none of the compounds
were identified as renal OCT?2 substrates, implying that
renal tubular secretion via OCT2 transporters may not
play a significant role in their elimination. These findings
contribute to a better understanding of the compounds’
excretory behavior, which is essential for evaluating their
pharmacokinetic and safety profiles (de Bruyn ez al., 2023).

Table 5: Predicted Excretion Properties of A>-THC (Compound 1) and Structurally Related Impurities (Compounds 2-12) Predicted by

pkCSM
Total Clearance (log Renal OCT2
Compound No. ml/min/kg) substrate
1 0.976 No
2 0.974 No
g 3 1 No
= 4 1.04 No
i
Q
& 5 0.61 No
6 0.899 No
7 0.779 No
8 0.779 No
9 0.954 No
10 0.959 No
11 0.349 No
12 0.888 No
3.6. nxicily predicted (Table 6) to be non-mutagenic in the AMES test

Safety profiling using pkCSM included predictions for
AMES toxicity, hepatotoxicity, hERG inhibition, and
skin sensitization (Pires ez al., 2023).All compounds were

and non-hepatotoxic, indicating general safety in terms of
genotoxicity and liver toxicity. However, compounds 6, 7,
8, 10, and 12 were predicted to inhibit the hERG channel,
suggesting a risk of cardiotoxicity (QT prolongation),
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which is a major concern in drug development. These same
compounds also showed potential for skin sensitization,

raising concerns about dermal exposure or allergic reactions
in topical applications.

Table 6: Predicted Toxicity Properties of A>-THC (Compound 1) and Structurally Related Impurities (Compounds 2—-12) Predicted by

pkCSM
M. Oral Rat
tol. axt d Oral Rat | Chronic
olerate
A Toxici T.Pyriformi i
Compound | AMES | dose | hERGI | hERGII | €U | ‘oxicy . Skin yriformis | Minnow
.. . . Toxicity | (LOAEL) | Hepatotoxicity . toxicity (log | toxicity
No. toxicity | (human) |inhibitor| inhibitor Sensitisation
@ / (LD50) | (log mg/ ug/L) (log mM)
k‘; d‘“g) (mol/kg) | kg bw/
o day)
1 No -0.154 No No 2.418 2.529 No No 1.961 -1.101
2 No -0.331 No No 2.41 2.463 No No 2.109 -1.077
B 3 No -0.3 No No 2.305 2.589 No No 1.972 -1.226
)
.g 4 No -0.199 No No 2.334 2.493 No No 2.083 -1.019
[_1
5 No -0.642 No No 1.949 2.115 No No 1.151 -0.684
6 No -0.692 No Yes 2.733 2.269 No No 1.01 0.17
7 No -0.247 No Yes 2.411 1.857 No No 1.625 0.287
8 No -0.247 No Yes 2.411 1.857 No No 1.625 0.287
9 No 0.169 No No 2.341 2.248 No No 1.372 -0.954
10 No 0.316 No Yes 1.919 2.198 No No 1.652 -0.814
11 No 0.457 No No 1.972 2.56 No Yes 1.777 0.377
12 No 0.309 No Yes 2.176 2.185 No No 2.134 -0.933

3.7. General Observations

The results indicate that most A8-THC-related impurities
exhibit similar pharmacokinetic behaviors to the parent
compound in terms of absorption and distribution, but
certain derivatives pose greater toxicity risks, especially with
respect to hERG inhibition and skin sensitization. Notably,
compound 10 (Olivetol) displayed poor skin permeability
but otherwise favorable ADMET features. Given the
widespread and often unregulated use of A8-THC products,
the presence of these impurities—even in trace quantities—
warrants attention. This in silico assessment provides a rapid
and cost-effective screening method to support drug quality
control, regulatory decision-making, and public health
protection (Franco ez al., 2023).

4. Conclusion and Future Directions

In this study, we performed a comprehensive in silico ADMET
and toxicity analysis of A8-tetrahydrocannabinol (A8-THC)
and eleven structurally characterized impurities commonly
found in commercial A8-THC products. Using the pkCSM
computational platform, we evaluated key pharmacokinetic
parameters—including absorption, distribution, metabolism,

excretion, and toxicity—to better understand the behavior
and potential risks associated with these compounds. The
results indicated that all compounds conformed to major
drug-likeness criteria, such as molecular weight, hydrogen
bonding potential, and membrane permeability. Most
compounds demonstrated good oral absorption and favorable
intestinal permeability, although some displayed elevated
lipophilicity and polarity that could affect solubility and tissue
distribution. P-glycoprotein substrate predictions suggest
active efflux in vivo, which may influence bioavailability
and therapeutic efficacy. Importantly, while the majority of
compounds appeared non-mutagenic and non-hepatotoxic, a
subset—including compounds 6, 7, 8, 10, and 12—exhibited
potential cardiotoxicity via hERG channel inhibition and
possible skin sensitization. These findings emphasize the need
for impurity-specific safety evaluations, especially given the
unregulated or semi-regulated sale of A8-THC products in
several markets. The similarity in pharmacokinetic profiles
between A8-THC and its impurities suggests that some
toxic effects observed in clinical or user settings may be
attributable not only to the active ingredient but also to co-
existing synthetic by-products. This study highlights the value
of in silico modeling as a first-line approach for early-phase
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toxicity prediction and pharmacokinetic screening of both
active pharmaceutical ingredients and their impurities. Such
evaluations can significantly improve drug quality control,
reduce downstream safety risks, and guide regulatory agencies
in setting impurity limits for cannabinoid-based therapeutics.

While our computational findings provide strong
predictive insights, further work is needed to validate these
results: In vitro studies should be performed to confirm
ADMET profiles, especially hERG inhibition, skin
sensitization, and P-gp interactions. In vivo pharmacokinetic
and toxicological studies are recommended to quantify systemic
exposure and evaluate organ-specific toxicity of key impurities.
Mechanistic docking and molecular dynamics simulations
may offer deeper insight into target-specific interactions and
toxicity pathways. Lastly, similar studies should be extended
to other cannabinoids and synthetic derivatives, as the market
continues to evolve with new compounds of unknown safety
profiles. Overall, this study contributes to the scientific
foundation required for the safe development, manufacturing,
and regulation of cannabinoid-containing products.
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