Biotechnological Tools for Early Cancer Detection in Clinical and Primary Healthcare Settings: A Narrative Review

Published: October 7, 2025

Authors

Jannatul Firdausi Laskar

Keywords
Early cancer detection, Non- invasive screening, Biomarkers, Cancer biotechnology, Oncology

Abstract

Background: Cancer remains a major global health concern, and survival depends heavily on early diagnosis. Recent advances in biotechnology have led to the development of more efficient and less invasive tools for early detection of cancer, key for improving diagnosis in resource-limited healthcare settings.

Purpose: This paper reviews a wide range of biotechnological tools currently being explored for early cancer detection. The goal is to understand their strengths, limitations, and possible impact on both clinical practice and public health.

Methods: A narrative review was conducted using peer-reviewed, open-access articles published between 2021 and 2025. Sixteen tools were grouped into eight themes, such as microfluidics, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) diagnostics, liquid biopsy, biosensors, organoids, breath-based tests, Artificial Intelligence (AI)-guided tools, and radiomics. Each tool was evaluated for its potential to be scaled for wider use, its ease of access, the strength of its clinical testing, and how well it can be incorporated into existing diagnostic systems.

Results: Several tools, such as wearable biosensors, breath-based tests, and paper-based microfluidics, showed strong potential for use in routine screening due to their low cost and ease of use. Others, like CRISPR and organoid models, are more complex but offer high accuracy and personalization. However, many tools still need wider validation across different populations and clinical settings.

Conclusion: While each tool has its own limitations, biotechnology is helping make cancer tests more accurate, less painful, and easier to access. If these technologies are developed carefully and adapted to local healthcare needs, they could improve early diagnosis and help reduce cancer cases around the world.

References

  • Ajikumar, A., & Lei, K. F. (2024). Microfluidic technologies in advancing cancer research. Micromachines, 15(12), 1444.https://doi.org/10.3390/mi15121444
  • Bamodu, O. A., & Chung, C. C. (2024). Cancer care disparities: Overcoming barriers to cancer control in low- and middle-income countries. JCO Global Oncology, 10, e2300439.https://doi.org/10.1200/GO.23.00439
  • Bray, F., Laversanne, M., Sung, H., Ferlay, J., Soerjomataram, I., Arnold, M., & Siegel, R. L. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 74(3), 229–263. https://doi.org/10.3322/caac.21834
  • Brown, J. S., Amend, S. R., Austin, R. H., Gatenby, R. A., Hammarlund, E. U., & Pienta, K. J. (2023). Updating the definition of cancer. Molecular Cancer Research, 21(11), 1142–1147. https://doi.org/10.1158/1541-7786.MCR-23-0411
  • Cai, Z., Poulos, R. C., Liu, J., & Zhong, Q. (2022). Machine learning for multi-omics data integration in cancer. iScience, 25(2), 103798. https://doi.org/10.1016/j.isci.2022.103798
  • Crosby, D., Bhatia, S., Brindle, K. M., Coussens, L. M., Dive, C., Emberton, M., … Sullivan, R. (2022). Early detection of cancer. Science, 375(6586), eaay9040. https://doi.org/10.1126/science.aay9040
  • Das, S., Dey, M. K., Devireddy, R., & Gartia, M. R. (2024). Biomarkers in Cancer Detection, Diagnosis, and Prognosis. Sensors, 24(1), 37. https://doi.org/10.3390/s24010037
  • Davis-Marcisak, E. F., Deshpande, A., Stein-O’Brien, G. L., Ho, W. J., Laheru, D., Jaffee, E. M., Fertig, E. J., & Kagohara, L. T. (2021). From bench to bedside: Single-cell analysis for cancer immunotherapy. Cancer Cell, 39(8), 1062–1080.https://doi.org/10.1016/j.ccell.2021.07.004
  • Dhyani, P., Quispe, C., Sharma, E., Alshammari, E. M., Alshammari, G., Alanazi, A. S., Alshammari, A. A., Moin, A., Alfarraj, S., Alenezi, F. N., Alqahtani, A. M., Alqahtani, W. S., & Daştan, S. D. (2022). Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine,vinorelbine and vincamine. Cancer Cell International, 22, 206. https://doi.org/10.1186/s12935-022-02624-9
  • Eisenstein, M. (2025). Putting early cancer detection to the test. Nature. https://doi.org/10.1038/d41586-025-00530-4
  • Elahi, R., & Nazari, M. (2024). An updated overview of radiomics-based artificial intelligence (AI) methods in breast cancer screening and diagnosis. Radiological Physics and Technology, 17, 795–818. https://doi.org/10.1007/s12194-024-00842-6
  • Ge, Q., Zhang, Z., Li, S., Ma, J., & Zhao, Z. (2024). Liquid biopsy: Comprehensive overview of circulating tumor DNA (Review). Oncology Letters, 28, 548. https://doi.org/10.3892/ol.2024.14681
  • Hegade, N. K., Bhat, R. B., & Packirisamy, M. (2025). Microfluidic liquid biopsy: Minimally invasive cancer diagnosis by nano-plasmonic label-free detection of extracellular vesicles: Review. International Journal of Molecular Sciences, 26(13), 6352. https://doi.org/10.3390/ijms26136352
  • https://doi.org/10.3390/life12121991
  • https://doi.org/10.3892/ol.2024.14546
  • Huang, A. L., He, Y. Z., Yang, Y., Pang, M., Zheng, G. P., & Wang, H. L. (2024). Exploring the potential of the TCR repertoire as a tumor biomarker (Review). Oncology Letters, 28(3), 413.
  • Huhulea, E. N., Huang, L., Eng, S., Sumawi, B., Huang, A., Aifuwa, E., Hirani, R., Tiwari, R. K., & Etienne, M. (2025). Artificial intelligence advancements in oncology: A review of current trends and future directions. Biomedicines, 13(4), 951. https://doi.org/10.3390/biomedicines13040951
  • Iqbal, M. J., Javed, Z., Herrera-Bravo, J., Sadia, H., Irshad, A., Raza, S., Shabana, N., Baig, M. M. F. A., Ashraf, W., Shafique, S., Chigurupati, S., & Zayed, H. (2022). Biosensing chips for cancer diagnosis and treatment: A new wave towards clinical innovation. Cancer Cell International, 22, 354. https://doi.org/10.1186/s12935-022-02777-7
  • Jiménez, Á. L. (2024). Drug discovery, early diagnosis, and new treatments: This is how biotechnology has changed the fight against cancer. Retrieved July 20, 2025, from https://www.asebio.com/en/news-events/news/drug-discovery-early-diagnosis-and-new-treatments-how-biotechnology-has-changed
  • Kalluri, R., & LeBleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science, 367(6478), eaau6977. https://doi.org/10.1126/science.aau6977
  • Li, R., Fan, H., Zhou, H., Chen, Y., Yu, Q., Hu, W., Liu, G. L., & Huang, L. (2023). Nanozyme-catalyzed metasurface plasmon sensor-based portable ultrasensitive optical quantification platform for cancer biomarker screening. Advanced Science, 10(24), e2301658. https://doi.org/10.1002/advs.202301658
  • Ma, X., Wang, Q., Li, G., Li, H., Xu, S., & Pang, D. (2023). Cancer organoids: A platform in basic and translational research. Genes & Diseases, 11(2), 614–632. https://doi.org/10.1016/j.gendis.2023.02.052
  • Milner, D. A., Jr., & Lennerz, J. K. (2024). Technology and future of multi-cancer early detection. Life, 14(7), 833. https://doi.org/10.3390/life14070833
  • National Cancer Institute. (2021). What is Cancer? U.S. Department of Health and Human Services, National Institutes of Health. Retrieved fromhttps://www.cancer.gov/about-cancer/understanding/what-is-cancer
  • Patil, D. P. (2022). Biotechnology driven interventions for addressing issue of cancer disease. Institute of Life Sciences. Retrieved from https://www.ils.res.in/biotechnology-driven-interventions-for-addressing-issue-of-cancer-disease/
  • Rabaan, A. A., AlSaihati, H., Bukhamsin, R., Bakhrebah, M. A., Nassar, M. S., Alsaleh, A. A.,Mohapatra, R. K. (2023). Application of CRISPR/Cas9 technology in cancer treatment: A future direction. Current Oncology (Toronto, Ont.), 30(2), 1954–1976. https://doi.org/10.3390/curroncol30020152
  • Ravichandran, M., & Maddalo, D. (2023). Applications of CRISPR-Cas9 for advancing precision medicine in oncology: From target discovery to disease modeling. Frontiers in Genetics, 14, 1273994. https://doi.org/10.3389/fgene.2023.1273994
  • Sahoo, K., Lingasamy, P., Khatun, M., Debnath, M., Ghosh, S., Kumari, A., Kaur, H., Patel, N., Yadav, R., & Singh, A. (2025).  Artificial Intelligence in cancer epigenomics: A review on advances in pan-cancer detection and precision medicine. Epigenetics & Chromatin, 18, 35. https://doi.org/10.1186/s13072-025-00595-5
  • Sebastian, A. M., & Peter, D. (2022). Artificial Intelligence in cancer research: Trends, challenges and future directions. Life, 12(12), 1991.
  • Seong, H., Izutsu, R., Osaki, M., & Okada, F. (2025). Cancer prevention: Past challenges and future directions. Genes and Environment, 47, 4. https://doi.org/10.1186/s41021-025-00326-y
  • Shur, J. D., Doran, S. J., Kumar, S., ap Dafydd, D., Downey, K., O’Connor, J. P. B., Papanikolaou, N., Messiou, C., Koh, D. M., & Orton, M. R. (2021). Radiomics in oncology: A practical guide. RadioGraphics, 41(6), 1717–1731.https://doi.org/10.1148/rg.2021210037
  • Sood, A., Mehrotra, A., Sharma, U., Aggarwal, D., Singh, T., Shahwan, M., Sharma, A., Verma, P., Yadav, R., & Kumar, M. (2024). Advancements and recent explorations of anti-cancer activity of chrysin: from molecular targets to therapeutic perspective. Exploration of Targeted Anti-tumor Therapy, 5(3), 477.https://doi.org/10.37349/etat.2024.00230
  • Tao, B., Li, X., Hao, M., Tian, T., Li, Y., Li, X., Yang, C., Li, Q., Feng, Q., Zhou, H., Zhao, Y., Wang, D., & Liu, W. (2025). Organoid-guided precision medicine: From bench to bedside. MedComm, 6(5), e70195. https://doi.org/10.1002/mco2.70195
  • Valizadeh, P., Jannatdoust, P., Pahlevan-Fallahy, M. T., Hassankhani, A., Amoukhteh, M., Bagherieh, S., Ghadimi, D. J., & Gholamrezanezhad, A. (2025). Diagnostic accuracy of radiomics and artificial intelligence models in diagnosing lymph node metastasis in head and neck cancers: A systematic review and meta-analysis. Neuroradiology, 67, 449–467. https://doi.org/10.1007/s00234-024-03485-x
  • Wang, P., Kong, X., Zhang, H., Liu, C., Lyu, Y., Wang, S., Chen, J., & Yu, J. (2022). Identification of lung cancer breath biomarkers based on perioperative breathomics testing: A prospective observational study. eClinicalMedicine, 47, 101384. https://doi.org/10.1016/j.eclinm.2022.101384
  • World Health Organization. (2022). Cancer. Retrieved from https://www.who.int/news-room/fact-sheets/detail/cancer
  • World Health Organization. (2022). Cancer. Retrieved from https://www.who.int/news-room/fact-sheets/detail/cancer
  • Wu, T., & Liu, G. (2025). Non-invasive wearables in inflammation monitoring: From biomarkers to biosensors. Biosensors, 15(6), 351. https://doi.org/10.3390/bios15060351
  • Yang, Q., Cheng, L., Hu, L., Lou, D., Zhang, T., Li, J., Zhu, Q., & Liu, F. (2020). An integrative microfluidic device for isolation and ultrasensitive detection of lung cancer-specific exosomes from patient urine. Biosensors and Bioelectronics, 163, 112290. https://doi.org/10.1016/j.bios.2020.112290
  • Yang, S.-M., Lv, S., Zhang, W., & Cui, Y. (2022). Microfluidic Point-of-Care (POC) Devices in Early Diagnosis: A Review of Opportunities and Challenges. Sensors, 22(4), 1620. https://doi.org/10.3390/s22041620
  • Yockell-Lelièvre, H., Philip, R., Kaushik, P., Masilamani, A. P., & Meterissian, S. H. (2025). Breathomics: A non-invasive approach for the diagnosis of breast cancer. Bioengineering, 12(4), 411. https://doi.org/10.3390/bioengineering12040411
  • Zaki, S. A., Ogunwobi, O. O., & Ressom, H. W. (2025). Mechanisms and technologies in cancer epigenetics. Frontiers in Oncology, 14, Article 1513654. https://doi.org/10.3389/fonc.2024.1513654

How to Cite

Jannatul Firdausi Laskar. Biotechnological Tools for Early Cancer Detection in Clinical and Primary Healthcare Settings: A Narrative Review. J. Multidiscip. Res. Healthcare. 2025, 11, 10-20
Biotechnological Tools for Early Cancer Detection in Clinical and Primary Healthcare Settings: A Narrative Review

Current Issue

PeriodicityBiannually
Issue-1June
Issue-2December
ISSN Print2393-8536
ISSN Online2393-8544
RNI No.CHAENG/2014/57978

This work is licensed under a Creative Commons Attribution 4.0 International License.

Articles in Journal of Multidisciplinary Research in Healthcare by Chitkara University Publications are Open Access articles that are published with licensed under a Creative Commons Attribution- CC-BY 4.0 International License. Based on a work at https://jmrh.chitkara.edu.in/. This license permits one to use, remix, tweak and reproduction in any medium, even commercially provided one give credit for the original creation.

View Legal Code of the above-mentioned license, https://creativecommons.org/licenses/by/4.0/legalcode

View Licence Deed here https://creativecommons.org/licenses/by/4.0/

Creative Commons License

Journal of Multidisciplinary Research in Healthcare by Chitkara University Publications is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://jmrh.chitkara.edu.in/

Visibility, Memberships and Ethics