Diagnostic Laboratories – Are These Radiation Safe?

Published: April 10, 2017


R. Rajan, Paul Rajan Rajkumar

iagnostic Imaging Equipments, Atomic Energy Regulatory Body (AERB), Total Quality Management (TQM), Radiation Control Measures, Top Management Commitment, Radiation Compliance Index


The demand for Diagnostic Centers in India is propelled by changes in culture, increase in population, rise in infectious disease, increase in healthcare expenditure and rising adoption of preventive health check-ups. The Private diagnostic market in India has limited number of organized players and the overall market is driven by unorganized laboratories. The Diagnostic Imaging equipments such as X-ray, CT (Computed Tomography) Scanner and BMD (Bone Mineral Densitometer) need to be handled with utmost care as they have human made ionizing radiation exposure risks. India is one of the largest consumers of refurbished diagnostic imaging equipments and the beneficiaries include Diagnostic Centers, Corporate Hospitals and Chain of Diagnostic Laboratories. The Atomic Energy Regulatory Body (AERB) in India regulates the usage of diagnostic imaging equipments by evolving policies and procedures to be strictly followed by Diagnostic Centers for containing excessive radiation. The changes in procurement policy made by AERB in September 2015 have restricted importing of used diagnostic imaging equipments up to a maximum of 7 years. This regulatory change has triggered a research question, Diagnostic Laboratories – Are these Radiation Safe? This research was conducted with the objective of assessing whether diagnostic centers follow the best practices mandated by AERB. The researcher has conducted a very structured assessment on AERB compliance using 7 different parameters namely, Regulatory, Layout Engineering, Technician Competency, Human Safety, Operations Knowhow, Radiation Exposure Monitoring and Top Management Commitment. This study was conducted in 192 diagnostic centers across multiple cities in Tamil Nadu, with a structured questionnaire contained 34 questions. Based on the responses received on the actual practices followed by diagnostic centers to contain Radiation risk, Radiological Compliance Index (RCI) was estimated. The analysis has revealed that Top Management Commitment was very low with a RCI score of 2.02 (Moderate Presence of AERB recommended best practices) and Operations “Know-Know” was high with a score of 4.40 (High Presence of AERB recommended best practices). The comparative analysis of RCI between National Accreditation Board for testing and Laboratories (NABL) accredited (RCI Score 3.19) and Non NABL (RCI Score 3.18) diagnostic centers has indicated that the accreditation did not significantly influence the compliance. The Pearson correlation co-efficient has established moderately positive correlation with Revenue (+ 0.321) & Patient Queue size (+0.293) on RCI. This study has concluded with sufficient evidence and analysis that Private Diagnostic Centers need to focus on appointing Radiation Safety Officer, monitoring radiation exposure dosage, periodical equipment service, continuous training of their staff and periodical QA tests for equipment fitness in order to achieve significant regulatory compliance maturity levels. This research has further recommended similar research in private diagnostic laboratories in other states in India and comparative analysis of compliance to AERB guide lines between Government Hospitals and Private Diagnostic Centers.


[1] Beinfeld, M.T., Wittenberg. E, & Gazelle, G. S. (2005). Cost-effectiveness of whole-body CT screening. Radiology, 234, 415–422.
[2] Brenner, D.J, Doll, R, & Goodhead, D.T, et. al., (2003). Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci, U.S.A, 100, 13761–13766.
[3] Berrington de Gonzalez, A., & Darby, S. (2004). Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet, 363, 345–351.
[4] Brenner, D.J, & Elliston, C.D. (2004). Estimated radiation risks potentially associated with full-body CT screening. Radiology, 232, 735–738.
[5] Brenner, D.J. (2004). Radiation risks potentially associated with low-dose CT screening of adult smokers for lung cancer. Radiology, 231, 440–445.
[6] Brenner, D.J, & Georgsson, M.A. (2005). Mass screening with CT colonography: should the radiation exposure be of concern?. Gastroenterology, 129, 328–337.
[7] Brenner, D.J. (2006).It is time to retire the computed tomography dose index (CTDI) for CT quality assurance and dose optimization. Med Phys, 33, 1189–1191.
[8] Brenner, D.J, & Hall, J. (2007).Current concepts: Computed Tomography – An increasing source of radiation exposure, N.Enj. Med, 357, 2274–2284.
[9] Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297–334.
[10] Djermouni, B, & Boal.T (2007). International Atomic Energy Agency, Regulatory Control of Radiation Sources, IAEA Safety Standards Series No. GS-G-1.5,
[11] Fenghueih, H.(1998). Integrating ISO 9001:2000 with TQM spirits. A survey on Industrial Management Data Systems. 8, 373–379.
[12] Giles, J. (2004). Study warns of ‘avoidable’ risks of CT scans. Nature, 431–391.
[13] Groves, A.M, Owen, K.E, & Courtney, H.M, et al.(2004) 16-Detector multislice CT: dosimetry estimation by TLD measurement compared with Monte Carlo simulation. Br J Radiol, 77, 662–675.
[14] Lee, C.I, Haims, A.H, Monico, E.P, Brink, J.A, & Forman, H.P. (2004). Diagnostic CT scans: assessment of patient, physician, and radiologist awareness of radiation dose and possible risks. Radiology, 231, 393–398.
[15] Linton, O.W, Mettler, F.A. Jr. (2003) National conference on dose reduction in CT, with an emphasis on pediatric patients. AJR Am J Roentgenol, 181, 321–329.
[16] Martin, C.J, Sutton, D.G, & Sharp, P.F.(1999). Balancing patient dose and image quality. Appl Radiat Isot, 50, 1–19.
[17] McNitt-Gray, M.F. (2002). AAPM/RSNA physics tutorial for residents – topics in CT: radiation dose in CT. Radiographics, 22, 1541–1553.
[18] Mettler, F.A. Jr, Wiest, P.W, Locken, J.A, & Kelsey, C.A. (2000). CT scanning: patterns of use and dose. J Radiol Prot, 20, 353–359.
[19] Oikarinen, H., et al., (2009). Unjustified CT examinations in young patients, Eur. Radiol, 195, 1161–1165.
[20] Ortiz Lopez, P. (2006). International Atomic Energy Agency, Applying Radiation Safety Standards in Nuclear Medicine, Safety Reports Series No. 40, Printed by IAEA, Austria.
[21] Ortiz Lopez, P. (2006). International Atomic Energy Agency, Applying Radiation Safety Standards in Radiotherapy, Safety Reports Series No. 38, Printed by IAEA, Austria.
[22] Ortiz Lopez, P. (1999). International Atomic Energy Agency, Organization and Implementation of a National Regulatory Infrastructure Governing Protection Against Ionizing Radiation and the Safety of Radiation Sources: Interim Report for Comment, IAEA-TECDOC-1067, IAEA, Vienna.
[23] Paterson, A, Frush, D.P, & Donnelly, L.F. (2001). Helical CT of the body: are settings adjusted for pediatric patients? AJR Am J Roentgenol, 176, 297–301.
[24] Richard, I.L. & Davis, S.R. (2001). Statistics for Management, 7th Edition, Prentice-Hall: 791–795.
[25] Richard Monson, R., James Cleaver, E., Herbert Abrams, L., et al. (2006). Health risks from exposure to low levels of ionizing radiation – BEIR VII. Washington, DC: National Academies Press, Washington D.C.
[26] Sources and effects of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation: UNSCEAR 2000 report to the General Assembly. New York: United Nations, 2000.
[27] United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of Ionizing radiation, Vol. 1: Sources. New York, NY: United Nations Publishing; 2000.
[28] Wall, B.F, & Hart, D. (1997). Revised radiation doses for typical x-ray examinations. (5,000 patient dose measurements from 375 hospitals). The British Journal of Radiology, 70, 437–439.
[29] What’s NEXT? Nationwide Evaluation of X-ray Trends: 2000 computed tomography. (CRCPD publication no. N EXT_2000CTT.) Conference of Radiation Control Program Directors, Department of Health and Human Services, 2006.
[30] White, K.S. (1996). Helical/spiral CT scanning: a pediatric radiology perspective. Pediatr Radiol, 26, 5–14.
[31] World Health Organization, (1982). Quality Assurance in Diagnostic Radiology, WHO, Geneva.

How to Cite

R. Rajan, Paul Rajan Rajkumar. Diagnostic Laboratories – Are These Radiation Safe?. J. Multidiscip. Res. Healthcare. 2017, 03, 99-127
Diagnostic Laboratories – Are These Radiation Safe?

Current Issue

ISSN Print2393-8536
ISSN Online2393-8544
RNI No.CHAENG/2014/57978
OA Policy

Publisher's policy of the journal at Sherpa UK for the submitted, accepted, and published articles. Click OAPolicy

Plan-S Compliance

To check compliance, one has to use the Journal Check Tool (JCT). This tool provided by cOAlition S (European funders) for the researchers (fundee) to check the compliance with the journal.

Recommend journal to your library

You can recommend the journal being a researcher or faculty member to your library. We will post a copy of the Journal to your library on your behalf at free of cost.
Click here: Recommend Journal

Preprint Arxiv Submission

The authors are encouraged to submit the author’s copy (preprint) to appropriate preprint archives e.g. https://arxiv.org and/or on https://indiarxiv.org or institutional repositories (e.g., D Space) before paper acceptance by the editor of Journal. After publications of the paper author(s) should mention the citation information, title and abstract along with DOI number of the publication carefully on the required page of the depository(ies).


Phone: +91-172-2741000, +91-172-4691800
Email : editor.jmrh@chitkara.edu.in

Abstract and Indexing


This work is licensed under a Creative Commons Attribution 4.0 International License.

Articles in Journal of Nuclear Physics, Material Sciences, Radiation and Applications (J. Nucl. Phy. Mat. Sci. Rad. A.) by Chitkara University Publications are Open Access articles that are published with licensed under a Creative Commons Attribution- CC-BY 4.0 International License. Based on a work at http://jnp.chitkara.edu.in. This license permits one to use, remix, tweak and reproduction in any medium, even commercially provided one give credit for the original creation.

View Legal Code of the above-mentioned license, https://creativecommons.org/licenses/by/4.0/legalcode

View Licence Deed here https://creativecommons.org/licenses/by/4.0/

Creative Commons License

Journal of Nuclear Physics, Material Sciences, Radiation and Applications by Chitkara University Publications is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://jnp.chitkara.edu.in/