A Recent Trend on Functional and Therapeutic Role of Carob Beans In Food Products

Published: October 10, 2022

Authors

Shadma Naaz, Nishtha Khansili, Shweta Sharma

Keywords
Functional profile Nutritional composition Carob bean Bioactive compounds

Abstract

Background: Carob (Ceratonia siliqua L.) is a nutritious and medicinal evergreen crop of the Leguminosae family, cultivated in Mediterranean regions of West Asia and North Africa. Although its sustaining worth has been recognized for prosperity, its therapeutic characteristics have only recently been investigated, regardless of that some of those facts have been employed in ancestral remedies for generations

Purpose: To study the different functional and therapeutic role of carob beans and its utilization in the food products

Conclusions: Carob products are high in fibre, carbohydrates, and beneficial components such as polyphenols and D-Pinitol. Because of their anti-hyperglycaemic, antioxidant, and anti-inflammatory properties, bioactive chemicals found in carob fruit and its derivatives help treat a variety of health issues, including diabetes, heart disease, and gastrointestinal disorders. The current review focuses on functional properties of carob beans and its potential in generating a wide range of health-beneficial food and formulations

References

Abd Razik, B. M., Hasan, H., Murtadha, A., K., & M. (2012). The study of antibacterial activity of Plantago major and Ceratonia siliqua. Iraqi Postgraduate med J., 11, 130–135.

Abu Hafsa, S. H., Ibrahim, S. A., Hassan, A. A., & Anim, J. (2017) [Ahead of print] Carob pods (Ceratonia siliqua L.) improve growth performance, antioxidant status and caecal characteristics in growing rabbits. Journal of Animal Physiology and Animal Nutrition, 101(6), 1307–1315. https://doi.org/10.1111/jpn.12651

Agrawal, A., Mohan, M., Kasture, S., Foddis, C., Frau, M. A., Loi, M. C., & Maxia, A. (2011). Antidepressant activity of Ceratonia siliqua L. fruit extract, a source of polyphenols. Natural Product Research, 25(4), 450–456. https://doi.org/10.1080/14786419.2010.527447

Aissani, N., Coroneo, V., Fattouch, S., & Caboni, P. (2012). Inhibitory effect of carob (Ceratonia siliqua) leaves methanolic extract on Listeria monocytogenes. Journal of Agricultural and Food Chemistry, 60(40), 9954–9958. https://doi.org/10.1021/jf3029623

Akdeniz, E., Yakışık, E., Rasouli Pirouzian, H., Akkın, S., Turan, B., Tipigil, E., Toker, O. S., & Ozcan, O. (2021). Carob powder as cocoa substitute in milk and dark compound chocolate formulation. Journal of Food Science and Technology, 58(12), 4558–4566. https://doi.org/10.1007/s13197-020-04943-z

Akkaya, N. E., Ergun, C., Saygun, A., Yesilcubuk, N., Akel-Sadoglu, N., Kavakli, I. H., Turkmen, H. S., & Catalgil-Giz, H. (2020). New biocompatible antibacterial wound dressing candidates; agar-locust bean gum and agar-salep films. International Journal of Biological Macromolecules, 155, 430–438. https://doi.org/10.1016/j.ijbiomac.2020.03.214

Alali, F. Q., Tawaha, K., El-Elimat, T., Syouf, M., El-Fayad, M., Abulaila, K., Nielsen, S. J., Wheaton, W. D., Falkinham, J. O., & Oberlies, N. H. (2007). Antioxidant activity and total phenolic content of aqueous and methanolic extracts of Jordanian plants: An ICBG project. Natural Product Research, 21(12), 1121–1131. https://doi.org/10.1080/14786410701590285

Albertos, I., Jaime, I., Diez, A. M., González-Arnáiz, L., & Rico, D. (2015) Carob seed peel as natural antioxidant in minced and refrigerated (4 °C) Atlantic horse mackerel (Trachurus trachurus). LWT – Food Science and Technology, 64(2), 650–656. https://doi.org/10.1016/j.lwt.2015.06.037

Al-Fawwaz, A. T., & Al-Khaza’leh, K. A. (2016). Antibacterial And Antifungal Effect Of Some Natural Extracts And Their Potential Use As Photosensitizers. European Scientific Journal, ESJ, 12(6), 147–157. http://doi.org/10.19044/esj.2016.v12n6p147

Al-Hadid, K. J.. (2016). Evaluation of antiviral activity of different medicinal plants against Newcastle disease virus. American Journal of Agricultural and Biological Sciences Sci. 2016, 11(4), 157–163. https://doi.org/10.3844/ajabssp.2016.157.163

Al-Qaraleh, S., Tarawneh, K. A., & Am-Euras, J. (2016). Agric. Environmental Sciences, 16, 479–486. https://doi.org/10.5829/idosi.aejaes.2016.16.3.12847

Altiner, D. D. (2020). Physicochemical, sensory properties and in-vitro bioaccessibility of phenolics and antioxidant capacity of traditional noodles enriched with carob (Ceratonia siliqua L.) flour. Food Science and Technology, 41(3), 587–595. https://doi.org/10.1590/fst.21020

Alvarez-Lorenzo, C., Blanco-Fernandez, B., Puga, A. M., & Concheiro, A. (2013). Crosslinked ionic polysaccharides for stimuli-sensitive drug Delivery. Advanced Drug Delivery Reviews, 65(9), 1148–1171. https://doi.org/10.1016/j.addr.2013.04.016

Amagwula, I. O., Osuji, C. M., Omeire, G. C., Awuchi, C. G., & Okpala, C. O. R. (2022). Combined impact of freezing and soaking times on different cowpea varieties’ flour functionality and resultant gel strength, sensory and product yield of moi-moi. AIMS Agriculture and Food, 7(4), 762–776. https://doi.org/10.3934/agrfood.2022047

Amarenco, P., Goldstein, L. B., Messig, M., O’Neill, B. J., Callahan, A., Sillesen, H., Hennerici, M. G., Zivin, J. A., Welch, K. M. A., & SPARCL Investigators. (2009). Relative and cumulative Effects of Lipid and Blood Pressure Control in the Stroke Prevention by Aggressive Reduction in cholesterol Levels Trial. Stroke, 40(7), 2486–2492. https://doi.org/10.1161/STROKEAHA.108.546135

Amessis-Ouchemoukh, N., Ouchemoukh, S., Meziant, N., Idiri, Y., Hernanz, D., Stinco, C. M., Rodríguez-Pulido, F. J., Heredia, F. J., Madani, K., & Luis, J. (2017). Bioactive metabolites involved in the antioxidant, anticancer and anticalpain activities of Ficus carica L., Ceratonia siliqua L. and Quercus ilex L. extracts. Industrial Crops and Products, 95, 6–17. http://doi.org/10.1016/j.indcrop.2016.10.007

Anis, B. H., Mohamed, T., Raoudha, M. J., Mohamed, D., & Samir, J. (2015). Identification of phenolic compounds by high performance liquid chromatography/mass spectrometry (HPLC/MS) and in vitro evaluation of the antioxidant and antimicrobial activities of Ceratonia siliqua leaves extracts. Journal of Medicinal Plants Research, 9(14), 479–485. https://doi.org/10.5897/JMPR2011.685

Arhire, L. I., Mihalache, L., & Covasa, M. (2019). Irisin: A hope in understanding and managing obesity and metabolic syndrome. Frontiers in Endocrinology, 10, 524. https://doi.org/10.3389/fendo.2019.00524

Arribas, C., Cabellos, B., Cuadrado, C., & Guillamon. (2019a). Bioactive compounds, antioxidant activity, and sensory analysis of rice-based extruded snacks-like fortified with bean and carob fruit flours. E, and Pedrosa, M.M. Foods, 8(381), 1–13.

Arribas, C., Cabellos, B., Cuadrado, C., Guillamón, E., & Pedrosa, M. M. (2019). Extrusion effect on proximate composition, starch and dietary fibre of ready-to-eat products based on rice fortified with carob fruit and bean. LWT111, 387–393. https://doi.org/10.1016/j.lwt.2019.05.064

Arribas, C., Cabellos, B., Cuadrado, C., Guillamón, E., & Pedrosa, M. M. (2020) Cooking Effect on the Bioactive Compounds, Texture, and Color Properties of Cold-Extruded Rice/Bean-Based Pasta Supplemented with Whole Carob Fruit. Foods, 9(4), 415. https://doi.org/10.3390/foods9040415

Arribas, C., Cabellos, B., Cuadrado, C., Guillamón, E., & Pedrosa, M. M. (2019b) The effect of extrusion on the bioactive compounds and antioxidant capacity of novel gluten-free expanded products based on carob fruit, pea and rice blends. Innovative Food Science and Emerging Technologies, 52, 100–107. https://doi.org/10.1016/j.ifset.2018.12.003

Arribas, C., Cabellos, B., Sánchez, C., Cuadrado, C., Guillamón, E., & Pedrosa, M. M. (2017) The impact of extrusion on the nutritional composition, dietary fiber and in vitro digestibility of gluten-free snacks based on rice, pea and carob flour blends. Food and Function, 8(10), 3654–3663. https://doi.org/10.1039/c7fo00910k

Avallone, R., Cosenza, F., Farina, F., Baraldi, C., & Baraldi, M. (2002). Extraction and purification from Ceratonia siliqua of compounds acting on central and peripheral benzodiazepine receptors. Fitoterapia, 73(5), 390–396. https://doi.org/10.1016/s0367-326x(02)00115-6

Awuchi, C. G., & Okpala, C. O. R. (2022). Natural nutraceuticals, especially functional foods, their major bioactive components, formulation, and health benefits for disease prevention – An overview. Journal of Food Bioactives, 19. https://doi.org/10.31665/JFB.2022.18317

Awuchi, C. G., Morya, S., Dendegh, T. A., Okpala, C. O. R., & Korzeniowska, M. (2022). Nanoencapsulation of food bioactive constituents and its associated processes: A revisit. Bioresource Technology Reports, 19, (101088). https://doi.org/10.1016/j.biteb.2022.101088

Aziz, H., & Hicham, E. L. B. (2014). Optimization of production of carob pulp syrup from different pop lations of Moroccan carob (Ceratonia siliqua L..). International Journal of Emerging Technology and Advanced Engineering, 4(3), 855–863.

Babiker, E. E., Özcan, M. M., Ghafoor, K., Al Juhaimi, F., Ahmed, I. A. M., & Almusallam, I. A. (2020). Physico‐chemical and bioactive properties, fatty acids, phenolic compounds, mineral contents, and sensory properties of cookies enriched with carob flour. Journal of Food Processing and Preservation, 44(10), e14745. https://doi.org/10.1111/jfpp.14745

Bahry, H., Abdalla, R., Pons, A., Taha, S., & Vial, C. (2019). Optimization of lactic acid production using immobilized Lactobacillus rhamnosus and carob pod waste from the Lebanese food industry. Journal of Biotechnology, 306, 81–88. https://doi.org/10.1016/j.jbiotec.2019.09.017

Bañuls, C., Rovira-Llopis, S., López-Doménech, S., Veses, S., Víctor, V. M., Rocha, M., & Hernández-Mijares, A. (2016). Effect of consumption of a carob pod inositol-enriched beverage on insulin sensitivity and inflammation in middle-aged prediabetic subjects. Food and Function, 7(10), 4379–4387. https://doi.org/10.1039/C6FO01021K

Barak, S., & Mudgil, D. (2014). Locust bean gum: Processing, properties and food applications—A review. International Journal of Biological Macromolecules, 66, 74–80. https://doi.org/10.1016/j.ijbiomac.2014.02.017

Barakat, N. A. M., Laudadio, V., Cazzato, E., & Tufarelli, V. (2013). Potential contribution of Retama Raetam (Forssk.) Webb and Berthel as a forage shrub in Sinai. Egypt. Arid Land Research and Management, 27(3), 257–271. https://doi.org/10.1080/15324982.2012.756561

Barbosa, J. M., Ushikubo, F. Y., de Figueiredo Furtado, G., & Cunha, R. L. (2019). Oil in water emulsions stabilized by Maillard conjugates of sodium caseinate-locust bean gum. Journal of Dispersion Science and Technology, 40(5), 634–645. https://doi.org/10.1080/01932691.2018.1476152

Baumel, A., Mirleau, P., Viruel, J., Bou Dagher Kharrat, M., La Malfa, S., Ouahmane, L., Diadema, K., Moakhar, M., Sanguin, H., & Médail, F. (2018). Assessment of plant species diversity associated with the carob tree (Ceratonia siliqua, Fabaceae) at the Mediterranean scale. Plant Ecology and Evolution, 151(2), 185–193. https://doi.org/10.5091/plecevo.2018.1423

Ben Hsouna, A., Alayed, A. S., & Abdallah, E. M. (2012). African Journal of Microbiology Research, 6, 3480–3484.

Ben Hsouna, A., Alayed, A. S., & Abdallah, E. M. (2012). Evaluation of antimicrobial activities of crude methanolic extract of pods of Ceratonia siliqua L. against some pathogens and spoilage bacteria. African Journal of Microbiology Research, 6(14), 3480–3484. https://doi.org/10.5897/AJMR11.1613

Benchikh, Y., & Louailèche, H. (2014). Effects of extraction conditions on the recovery of phenolic compounds and in vitro antioxidant activity of carob (Ceratonia siliqua L.) pulp. Acta Botanica Gallica, 161(2), 175–181. https://doi.org/10.1080/12538078.2014.909325

Benkovíc, M., Belščak-Cvitanović, A., Bauman, I., Komes, D., & Srečec, S. (2017) Flow properties and chemical composition of carob (Ceratonia siliqua L.) flours as related to particle size and seed presence. Food Research International, 100(2), 211–218. https://doi.org/10.1016/j.foodres.2017.08.048

Berk, E., Sumnu, G., & Sahin, S. (2017). Usage of carob bean flour in gluten free cakes. Chemical Engineering Transactions, 57, 1909–1914.

Bindal, P., & Vishwanatha, T. (2019). Bioethanol production by sub merged fermentation from carob pod extract by using Saccharomyces ssp. International Journal of biotech trends and technology, 9(1), 1–3. https://doi.org/10.14445/22490183/IJBTT-V9I1P601

Bissar, S., & Özcan, M. M. (2022). Determination of quality parameters and gluten free Macaron production from carob fruit and sorghum. International Journal of Gastronomy and Food Science, 27, 100460. https://doi.org/10.1016/j.ijgfs.2021.100460

Boublenza, I., Lazouni, H. A., Ghaffari, L., Ruiz, K., Fabiano-Tixier, A. S., & Chemat, F. (2017). Influence of roasting on sensory, antioxidant, aromas, and physicochemical properties of carob pod powder (Ceratonia siliqua L.). Journal of Food Quality, 2017, 1–10. https://doi.org/10.1155/2017/4193672

Brassesco, M. E., Brandão, T. R. S., Silva, C. L. M., Pintado, M., & Bean, C. (2021). Carob bean (Ceratonia siliqua L.): A new perspective for functional food. Trends in Food Science and Technology, 114, 310–322. https://doi.org/10.1016/j.tifs.2021.05.037

Braz, L., Grenha, A., Corvo, M. C., Lourenço, J. P., Ferreira, D., Sarmento, B., & Rosa da Costa, A. M. R. (2018). Synthesis and characterization of locust bean gum derivatives and their application in the production of nanoparticles. Carbohydrate Polymers, 181, 974–985. https://doi.org/10.1016/j.carbpol.2017.11.052

Carbas, B., Salinas, M. V., Serrano, C., Passarinho, J. A., Puppo, M. C., Ricardo, C. P., & Brites, C. (2019). Chemical composition and antioxidant activity of commercial flours from Ceratonia siliqua and Prosopis spp. Journal of Food Measurement and Characterization, 13(1), 305–311. https://doi.org/10.1007/s11694-018-9945-7

Cepo, V., D., Mornar, A. (2014). Optimization of roasting conditions as an useful approach for increasing antioxidant activity of carob powder. Nigovi´c, B., Kremer, D., Radanovi´c, D., & Vedrina Dragojevi´c, I. Lebensmittel-Wissenschaft und -Technologie – Food Science and Technology, 58(2), 578–586. https://doi.org/10.1016/j.lwt.2014.04.004

Červenka, L., Frühbauerová, M., & Velichová, H. (2019). Functional properties of muffin as affected by Substituing wheat flour with carob powder. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 212–217. https://doi.org/10.5219/1033

Chan, D. C., Pang, J., Romic, G., & Watts, G. F. (2013). Postprandial hypertriglyceridemia and cardiovascular disease: Current and future therapies. Coronary Heart Disease, 15(309), 1–9. https://doi.org/10.1007/s11883-013-0309-9

Chao, E. C., & Henry, R. R. (2010). SGLT2 inhibition—A novel strategy for diabetes treatment. Nature Reviews. Drug Discovery, 9(7), 551–559. https://doi.org/10.1038/nrd3180.

Chaves, M. A., Piati, J., Malacarne, L. T., Gall, R. E., Colla, E., Bittencourt, P. R. S., de Souza, A. H. P., Gomes, S. T. M., & Matsushita, M. (2018). Extraction and application of chia mucilage (Salvia hispanica L.) and locust bean gum (Ceratonia siliqua L.) in goat milk frozen dessert. Journal of Food Science and Technology, 55(10), 4148–4158. https://doi.org/10.1007/s13197-018-3344-2

Clark, M. J., & Slavin, J. L. (2013). The Effect of fiber on satiety and food intake: a systematic review. Journal of the American College of Nutrition32(3), 200–211. https://doi.org/10.1080/07315724.2013.791194

Corsi, L., Avallone, R., Cosenza, F., Farina, F., Baraldi, C., & Baraldi, M. (2002). Antiproliferative effects of Ceratonia siliqua L. on mouse hepatocellular carcinoma cell line. Fitoterapia, 73(7–8), 674–684. https://doi.org/10.1016/s0367-326x(02)00227-7

Custódio, L., Fernandes, E., & Romano, A. (2009). STUDY OF THE ANTIOXIDANT ACTIVITY OF EXTRACTS FROM CAROB TREE (CERATONIA SILIQUA L.). Acta Horticulturae, (841), 507–510. https://doi.org/10.17660/ActaHortic.2009.841.70

Custódio, L., Fernandes, E., Escapa, A. L., López-Avilés, S., Fajardo, A., Aligué, R., Alberício, F., & Romano, A. (2008). Antiproliferative and apoptotic activities of extracts from carob tree (Ceratonia siliqua L.) in MDA-MB-231 human breast cancer cells. Planta Medica, 74(9), PA48. https://doi.org/10.1055/s-0028-1084046

Custódio, L., Fernandes, E., Escapa, A. L., López-Avilés, S., Fajardo, A., Aligué, R., Alberício, F., & Romano, A. (2009). Antioxidant activity and in vitro inhibition of tumor cell growth by leaf extracts from the carob tree (Ceratonia siliqua). Pharmaceutical Biology, 47(8), 721–728. https://doi.org/10.1080/13880200902936891

Custódio, L., Patarra, J., Alberício, F., Neng, N. R., Nogueira, J. M. F., & Romano, A. (2015). In vitro antioxidant and inhibitory activity of water decoctions of carob tree (Ceratonia siliqua L.) on cholinesterases, α-amylase and α-glucosidase. Natural Product Research, 29(22), 2155–2159. https://doi.org/10.1080/14786419.2014.996147

Dakia, P. A., Wathelet, B., & Paquot, M. (2007). Isolation and chemical evaluation of carob (Ceratonia siliqua L.) seed germ. Food Chemistry, 102(4), 1368–1374. https://doi.org/10.1016/j.foodchem.2006.05.059

Dayani, O., Khezri, A., & Moradi, A. G. (2012). Determination of nutritive value of date palm by-products using in vitro and in situ measurements. Small Ruminant Research, 105(1–3), 122–125. https://doi.org/10.1016/j.smallrumres.2012.01.015

Durazzo, A., Turfani, V., Narducci, V., Azzini, E., Maiani, G., & Carcea, M. (2014). Nutritional characterisation and bioactive components of commercial carobs flours. Food Chemistry, 153, 109–113. https://doi.org/10.1016/j.foodchem.2013.12.045

Egbuna, C., Awuchi, C. G., Kushwaha, G., Rudrapal, M., Patrick-Iwuanyanwu, K. C., Singh, O., Odoh, U. E., Khan, J., Jeevanandam, J., Kumarasamy, S., Chukwube, V. O., Narayanan, M., Palai, S., Găman, M. A., Uche, C. Z., Ogaji, D. S., Ezeofor, N. J., Mtewa, A. G., Patrick-Iwuanyanwu, C. C., Chikwendu, C. J. (2021). Bioactive compounds effective against type 2 diabetes mellitus: A systematic review. Current Topics in Medicinal Chemistry, 21(12), 1067–1095. https://doi.org/10.2174/1568026621666210509161059

Egbuna, C., Parmar, V. K., Jeevanandam, J., Ezzat, S. M., Patrick-Iwuanyanwu, K. C., Adetunji, C. O., Khan, J., Onyeike, E. N., Uche, C. Z., Akram, M., Ibrahim, M. S., El Mahdy, N. M., Awuchi, C. G., Saravanan, K., Tijjani, H., Odoh, U. E., Messaoudi, M., Ifemeje, J. C., Olisah, M. C., . . . Ibeabuchi, C. G. (2021). Toxicity of nanoparticles in biomedical application: Nanotoxicology. Journal of Toxicology, 2021, 9954443. https://doi.org/10.1155/2021/9954443

El Hajaji, H., Lachkar, N., Alaoui, K., Cherrah, Y., Farah, A., Ennabili, A., Bali, B., & Lachkar, M. (2010). Records of Natural Products, 4, 193–204. http://www.acgpubs.org/RNP/2010/Volume%204/Issue%201/23_RNP_1001_181.pdf

El Rabey, H. A., Al-Seeni, M. N., & Al-Ghamdi, H. B. (2017). Comparison between the hypolipidemic activity of parsley and carob in hypercholesterolemic male rats. BioMed Research International, 2017, 3098745. https://doi.org/10.1155/2017/3098745

El-Baky, A. H., Abd El-Baky, R. M., Desoukey, S. Y., AbdLateff, A., & Kamel, M. S. (2013). Bacterial Growth Inhibitory Effect of Ceratonia siliqua L. Plant Extracts Alone and in Combination with Some Antimicrobial Agents. Journal of Advanced Biotechnology and Bioengineering, 1, 3–13. https://doi.org/10.12970/2311-1755.2013.01.01.1

El-Beshbishy, H. A., Singab, A. N. B., Sinkkonen, J., & Pihlaja, K. (2006). Hypolipidemic and antioxidant effects of Morus alba L.(Egyptian mulberry) root bark fractions supplementation in cholesterol-fed rats. Life Sciences, 78(23), 2724–2733. https://doi.org/10.1016/j.lfs.2005.10.010

El-Haskoury, R., Zizi, S., Touzani, S., Al-Waili, N., Al-Ghamdi, A., Abdallah, M. B., York, N., & Care, M. (2015). Diuretic activity of carob (Ceratonia siliqua L.) honey: Comparison with furosemide. African Journal of Traditional, Complementary and Alternative Medicines, 12(4), 128–133. https://doi.org/10.21010/ajtcam.v12i4.19

El-Manfaloty, M. M., & Ali, H. M. (2014). The influence of carob powder on serum glucose and lipid profile in albino induced diabetic rats. al-Iqtiṣād Al-manzilī30(30), 35–46. https://doi.org/10.21608/jhe.2014.59454

El-Sherif, G., El-Sherif, M. A., & Tolba, K. H. (2011). Natural Science, 9, 108–115. http://connection.ebscohost.com/c/articles/69683741

Engin, S. P., & Mert, C. (2020). The effects of harvesting time on the physicochemical components of aronia berry. Turkish Journal of Agriculture and Forestry44(4), 361–370. https://doi.org/10.3906/tar-1903-130

Ercan, Y., Irfan, T., & Mustafa, K. (2013). Optimization of ethanol production from carob pod extract using immobilized Saccharomyces cerevisiae Cells in a stirred tank bioreactor. Bioresource Technology, 135, 365–371. https://doi.org/10.1016/j.biortech.2012.09.006

Ersan, P., & Sonmez, Ö., ¨ O., ¨ & Gozmen, ¨ B. (2020). Microwave – Assisted d – Pinitol extraction from carob: Application of box – Behnken design. Journal of the Iranian Chemical Society, 17(4), 871–879. https://doi.org/10.1007/s13738-019-01824-x

Fantini, M., Benvenuto, M., Masuelli, L., Frajese, G. V., Tresoldi, I., Modesti, A., & Bei, R. (2015). In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: Perspectives on cancer treatment. International Journal of Molecular Sciences, 16(5), 9236–9282. https://doi.org/10.3390/ijms16059236

Fidan, H., Petkova, N. T., & Slavov, A. (2019). Carob syrup and carob flour (Ceratonia siliqua L.) as functional carob syrup and carob flour (Ceratonia siliqua L.). Carpathian Journal of Food Science and Technology, 11(1), 71–82.

Fidan, H., Stankov, S., Petkova, N., Petkova, Z., Iliev, A., Stoyanova, M., Ivanova, T., Zhelyazkov, N., Ibrahim, S., Stoyanova, A., & Ercisli, S. (2020). Evaluation of chemical composition, antioxidant potential and functional properties of carob (Ceratonia siliqua L.) seeds. Journal of Food Science and Technology, 57(7), 2404–2413. https://doi.org/10.1007/s13197-020-04274-z

Forester, S. C., Choy, Y. Y., Waterhouse, A. L., & Oteiza, P. I. (2014). The anthocyanin Metabolites gallic acid, 3‐O‐ methylgallic Acid, and 2, 4, 6‐trihydroxybenzaldehyde Decrease Human colon Cancer Cell Viability by Regulating Pro‐oncogenic Signals. Molecular Carcinogenesis, 53(6), 432–439. https://doi.org/10.1002/mc.21974

Foundation, R. W., & Der Aue, I. (1997). Effects of roasting temperature on the aroma components of carob (Ceratonia siliqua L.). Journal of Agricultural and Food Chemistry, 8561(96), 1345–1350. https://doi.org/10.1021/jf960468e

Fujita, K., Norikura, T., Matsui-Yuasa, I., Kumazawa, S., Honda, S., Sonoda, T., Kojima-Yuasa, A., & Loor, J. J. (2021). Carob Pod Polyphenols Suppress the Differentiation of Adipocytes through Post transcriptional Regulation of C/EBPβ. PLOS ONE, 16(3), e0248073. https://doi.org/10.1371/journal.pone.0248073

Góral, M., Kozłowicz, K., Pankiewicz, U., Góral, D., Kluza, F., & Wójtowicz, A. (2018). Impact of stabilizers on the freezing process, and physicochemical and organoleptic properties of coconut milk-based ice cream. LWT, 92, 516–522. https://doi.org/10.1016/j.lwt.2018.03.010

Goulas, V, & Georgiou, E. (2020). Utilization of carob fruit as sources of phenolic compounds with antioxidant Potential: Extraction optimization and application in food models. Foods, 9(20), 1–13.

Goulas, V., & Georgiou, E. (2019). Utilization of carob fruit as sources of phenolic compounds with antioxidant Potential: Extraction optimization and application in food models. Foods, 9(1), 1–13. https://doi.org/10.3390/foods9010020

Goulas, V., & Hadjisolomou, A. (2019). Dynamic changes in targeted phenolic compounds and antioxidant potency of carob fruit (Ceratonia siliqua L.) products during in vitro digestion. LWT, 101, 269–275. https://doi.org/10.1016/j.lwt.2018.11.003

Goulas, V., Stylos, E. Κ., Chatziathanasiadou, Μ. V., Mavromoustakos, T., & Tzakos, A. G. (2016). Functional components of carob fruit: linking the chemical and biological space. International Journal of Molecular Sciences17(11), 1875. https://doi.org/10.3390/ijms17111875

Goulas, V., Stylos, E., Chatziathanasiadou, M. V., Mavromoustakos, T., & Tzakos, A. G. (2016). Functional components of carob Fruit: Linking the chemical and biological space. International Journal of Molecular Sciences, 17(11), 1875. https://doi.org/10.3390/ijms17111875

Graves, D. B. (2012). The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. Journal of Physics. Part D, 45(26), 1–42. https://doi.org/10.1088/0022-3727/45/26/263001

Griffin, K., & Khouryieh, H. (2020). Influence of electrostatic interactions on the formation and stability of multilayer fish oil-in-water emulsions stabilized by whey protein-xanthan-locust bean complexes. Journal of Food Engineering, 277, 109893. https://doi.org/10.1016/j.jfoodeng.2019.109893

Guenaoui, M., Guemour, D. J., & Meliani, S. (2019). Evaluation of the use of carob pods (Ceratonia Silliqua) in rabbit nutrition; effect on growth performances and health status after weaning. Livestock Research for Rural Development, 31, 85–87.

Haddarah, A., Ismail, A., Bassal, A., Hamieh, T., Ioannou, I., & Ghoul, M. (2013). Morphological and chemical variability of Lebanese carob varieties. European Scientific Journal, ESJ, 9(18). https://doi.org/10.19044/esj.2013.v9n18p%p

Haider, M. M. (2014). Citric acid production from carob pod extract by Aspergillus niger. IOSR Journal of Pharmacy and Biological Sciences, 9(3), 112–116. https://doi.org/10.9790/3008-0934112116

Hajaji, H. E., Lachkar, N., Alaoui, K., Cherrah, Y., Farah, A., Ennabili, A., Bali, B. E., & Lachkar, M. (2011). Antioxidant activity, phytochemical screening, and total phenolic content of extracts from three genders of carob tree barks growing in Morocco. Arabian Journal of Chemistry, 4(3), 321–324. https://doi.org/10.1016/j.arabjc.2010.06.053

Hallagan, J. B., La Du, B. N., Pariza, M. W., Putnam, J. M., & Borzelleca, J. F. (1997). Assessment of cassia gum. Food and Chemical Toxicology, 35(6), 625–632. https://doi.org/10.1016/S0278-6915(97)00018-5

Hamza, R. G., & Al-Seeni, M. (2015). Effect of using gamma-irradiated mixture extract of carob and Roselle in diabetic rats. International Journal of Pharmacy and Biological Sciences, 6(1), B951–B960.

Hamza, R. G., & Al-Seeni, M. N. (2015). International Journal of Pharmacy and Biological Sciences, 6, 951–960. http://www.ijpbs.net/details.php?article=4022

Hellwig, M., Gensberger-Reigl, S., Henle, T., & Pischetsrieder, M. (2018). Food-derived 1,2-dicarbonyl compounds and their role in diseases. Seminars in Cancer Biology, 49 (November 2017), 1–8. https://doi.org/10.1016/j.semcancer.2017.11.014

Hsouna, A. B., Saoudi, M., Trigui, M., Jamoussi, K., Boudawara, T., Jaoua, S., & El Feki, A. E. (2011). Characterization of bioactive compounds and ameliorative effects of Ceratonia siliqua Leaf extract against CCl4 induced hepatic oxidative damage and renal failure in rats. Food and Chemical Toxicology, 49(12), 3183–3191. https://doi.org/10.1016/j.fct.2011.09.034

Hussein, A. M., Shedeed, N. A., Abdel-Kalek, H. H., & El-Din, M. H. A. (2011). Antioxidative, Antibacterial and Antifungal Activities of Tea Infusions from Berry Leaves, Carob and Doum. Polish Journal of Food and Nutrition Sciences, 61(3), 201–209. https://doi.org/10.2478/v10222-011-0022-8

Ibrahim, A. H., Abd El-Baky, R. M., Desoukey, S. Y., AbdLateff, A., & Kamel, M. S. (2013). Bacterial growth inhibitory effect of Ceratonia siliqua L. Plant extracts alone and in combination with some antimicrobial agents. J. Adv. Biotechnol. Bioeng., 1, 3–13.

James, B. (2017). Use of nutraceutical and natural compounds containing anti-obese properties for the prevention and treatment of obesity. EC Nutrition, 6(5), 184–186.

Jamous, R. M., Zaitoun, S. Y., Husein, A. I., Qasem, I. B., & Ali-Shtayeh, M. S. (2015). Screening for Biological Activities of Medicinal Plants Used in Traditional Arabic Palestinian Herbal Medicine. European Journal of Medicinal Plants, 9(1), 1–13. https://doi.org/10.9734/EJMP/2015/17429

Jana, S., Gandhi, A., Sheet, S., & Sen, K. K. (2015). Metal ion-induced alginate–locust bean gum IPN microspheres for sustained oral Delivery of aceclofenac. International Journal of Biological Macromolecules, 72, 47–53. https://doi.org/10.1016/j.ijbiomac.2014.07.054

Kaity, S., Isaac, J., & Ghosh, A. (2013). Interpenetrating polymer network of locust bean gum-poly (vinyl alcohol) for controlled release drug Delivery. Carbohydrate Polymers, 94(1), 456–467. https://doi.org/10.1016/j.carbpol.2013.01.070

Kanat, M., DeFronzo, R. A., & Abdul-Ghani, M. A. (2015). Treatment of prediabetes. World Journal of Diabetes, 6(12), 1207–1222. https://doi.org/10.4239/wjd.v6.i12.1207

Kivcak, B., & Mert, T. (2002). Turkish Journal of Biology, 26, 197–200. http://journals.tubitak.gov.tr/biology/issues/biy-02-26-4/biy26-4-2-0111-4.pdf

Kongor, J. E., Hinneh, M., de Walle, D. V., Afoakwa, E. O., Boeckx, P., & Dewettinck, K. (2016). Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile—A review. Food Research International, 82, 44–52. https://doi.org/10.1016/j.foodres.2016.01.012

Kumar, V. P., Chauhan, N. S., Padh, H., & Rajani, M. (2006). Search for antibacterial and antifungal agents from selected Indian medicinal plants. Journal of Ethnopharmacology, 107(2), 182–188. https://doi.org/10.1016/j.jep.2006.03.013

Kumazawa, S., Taniguchi, M., Suzuki, Y., Shimura, M., Kwon, M. S., & Nakayama, T. (2002). Antioxidant activity of polyphenols in carob pods. Journal of Agricultural and Food Chemistry, 50(2), 373–377. https://doi.org/10.1021/jf010938r

Lachkar, N., Al-Sobarry, M., El Hajaji, H., Lamkinsi, T., Lachkar, M., Cherrah, Y., & Alaoui, K. (2016). Journal of Chemical and Pharmaceutical Research, 8, 202–210. http://www.jocpr.com/articles/antiinflammatoryand-antioxidant-effect-of-ceratonia-siliqua-l-methanol-barksextract.pdf

Lakkab, I., El, H., Lachkar, N., Lefter, R., Ciobica, A., El, B., & Lachkar, M. (2019). Ceratonia siliqua L. seed peels: Phytochemical pro fi le, antioxidant activity, and e ff ect on mood disorders, 54(January), 457–465. https://doi.org/10.1016/j.jff.201 9.01.041.

Lanfranchi, M., Zirilli, A., Alfano, S., Spiridione, F. S., Alibrandi, A., & Giannetto, C. (2019). The carob as a substitute for cocoa in the production of chocolate: Sensory analysis with bivariate association. Calitatea, 20(168), 148–153.

Lattimer, J. M., & Haub, M. D. (2010). Effects of dietary fiber and its components on metabolic health. Nutrients, 2(12), 1266–1289. https://doi.org/10.3390/nu2121266

Leidy, H. J., Todd, C. B., Zino, A. Z., Immel, J. E., Mukherjea, R., Shafer, R. S., Ortinau, L. C., & Braun, M. (2015). Consuming high-protein soy snacks affects appetite control, satiety, and diet quality in young people and influences select aspects of mood and cognition. Journal of Nutrition, 145(7), 1614–1622. https://doi.org/10.3945/jn.115.212092

Liang, C. Z., Zhang, X., Li, H., Tao, Y. Q., Tao, L. J., Yang, Z. R., Zhou, X. P., Shi, Z. L., & Tao, H. M. (2012). Gallic acid induces the apoptosis of human osteosarcoma cells in vitro and in vivo via the regulation of mitogen-activated protein kinase pathways. Cancer Biotherapy and Radiopharmaceuticals, 27(10), 701–710. https://doi.org/10.1089/cbr.2012.1245

Lopez, S. (2018). D-pinitol, a highly valuable product from carob pods: Health-promoting effects and metabolic pathways of this natural super-food ingredient and its derivatives. ‘ ’ Anchez, J. I., Moreno, D. A., & García-Viguera, C. AIMS Agriculture and Food, 3(February), 41–63. https://doi.org/10.3934/agrfood.2018.1.41

López-Sánchez, J. I., Moreno, D. A., & García-Viguera, C. (2021). Correction: D-pinitol, a highly valuable product from carob pods: Health-promoting effects and metabolic pathways of this natural super-food ingredient and its derivatives. AIMS Agriculture and Food, 6(2), 752–753. https://doi.org/10.3934/agrfood.2021044

Loullis, A., & Pinakoulaki, E. (2018). Carob as cocoa substitute: A review on composition, health benefits and food applications. European Food Research and Technology, 244(6), 959–977. https://doi.org/10.1007/s00217-017-3018-8

Lushchak, V. I. (2014). Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-Biological Interactions, 224, 164–175. https://doi.org/10.1016/j.cbi.2014.10.016

Macho-Gonzalez, ´ A., Garcimartín, A., Lopez-Oliva, ´ M. E., Celada, P., Bastida, S., Benedí, J., & S´ anchez-Muniz, F. J. (2020). Carob-fruit-extract-enriched meat modulates lipoprotein metabolism and insulin signaling in diabetic rats induced by high-saturated-fat diet. Journal of Functional Foods, 64, 103600.

Macho-González, A., Garcimartín, A., López-Oliva, M. E., Bertocco, G., Naes, F., Bastida, S., Sánchez-Muniz, F. J., & Benedí, J. (2017). Fiber purified extracts of carob fruit decrease carbohydrate absorption. Food and Function, 8(6), 2258–2265. https://doi.org/10.1039/c7fo00166e

Macho-Gonzalez, A., Garcimartín, A., López-Oliva, M. E., Ruiz-Roso, B., Martín de la Torre, I., Bastida, S., Benedí, J., Sánchez-Muniz, F. J., Sánchez-Muniz, F. J. (2019) Can Carob-Fruit-Extract-Enriched Meat Improve the Lipoprotein Profile, VLDL-Oxidation, and LDL Receptor Levels Induced by an Atherogenic Diet in STZ-NAD-Diabetic Rats? Nutrients, 11(2), I, & S´ anchez-Muniz. https://doi.org/10.3390/nu11020332

Macho-González, A., Garcimartín, A., Naes, F., López-Oliva, M. E., Amores-Arrojo, A., González-Muñoz, M. J., Bastida, S., Benedí, J., & Sánchez-Muniz, F. J. (2018). Effects of fiber purified extract of carob fruit on fat digestion and postprandial lipemia in healthy rats. Journal of Agricultural and Food Chemistry, 66(26), 6734–6741. https://doi.org/10.1021/acs.jafc.8b01476

Macho-González, A., López-Oliva, M. E., Merino, J. J., García-Fernández, R. A., Garcimartín, A., Redondo-Castillejo, R., Bastida, S., Sánchez-Muniz, F. J., & Benedí, J. (2020). Carob fruit extract-enriched meat improves pancreatic beta-cell dysfunction, hepatic insulin signaling and lipogenesis in late-stage Type 2 diabetes mellitus model. Journal of Nutritional Biochemistry, 84, 108461. https://doi.org/10.1016/j.jnutbio.2020.108461

Madigan, M. T., Martinko, J. M., & Parker, J. (2006). Brock biology of microorganisms, 11 p. 136. Pearson Prentice Hall.

Mahtout, R., Zaidi, F., Saadi, L. O., Boudjou, S., Oomah, B. D., & Hosseinian, F. (2016). International Journal of Engineering and Techniques, 2, 168–177. http://www.ijetjournal.org/Volume2/Issue2/IJETV2I2P28.pdf

Malik, K., Arora, G., & Singh, I. (2011). Locust bean gum as superdisintegrant—Formulation and evaluation of nimesulide orodispersible tablets. Polimery w Medycynie, 41(1), 17–28.

Mamone, G., Sciammaro, L., De Caro, S., Di, L., Siano, F., Picariello, G., & Cecilia, M. C. (2019). Comparative analysis of protein composition and digestibility of Ceratonia siliqua L. and Prosopis spp. seed germ flour. Food Research International, 120 (December 2018), 188–195. https://doi.org/10.1016/j.foodres.2019.02.035

Marti, A., & Pagani, M. A. (2013). What can play the role of gluten in gluten free pasta? Trends in Food Science and Technology, 31(1), 63–71. https://doi.org/10.1016/j.tifs.2013.03.001

Martin, V. T., & Vij, B. (2016). Diet and Headache: Part 1. Headache: The Journal of Head and Face Pain56(9), 1543–1552. https://doi.org/10.1111/head.12953

Martin-Diana, A. B., Izquierdo, N., Albertos, I., Sanchez, M. S., Herrero, A., Sanz, M. A., & Rico, D. (2017). Valorization of carob’s germ and seed peel as natural antioxidant ingredients in gluten-free crackers. Journal of Food Processing and Preservation, 41(2), article e12770. https://doi.org/10.1111/jfpp.12770

Martínez-Larrad, M. T., Corbatón-Anchuelo, A., Fernández-Pérez, C., Lazcano-Redondo, Y., Escobar-Jiménez, F., & Serrano-Ríos, M. (2016). Metabolic syndrome, glucose tolerance categories and the cardiovascular risk in Spanish population. Diabetes Research and Clinical Practice, 114, 23–31. https://doi.org/10.1016/j.diabres.2016.02.003

Martínez-Rodríguez, R., Navarro-Alarcón, M., Rodríguez-Martínez, C., & Fonollá-Joya, J. (2013) Effects on the lipid profile in humans of a polyphenol-rich carob (Ceratonia siliqua L.) extract in a dairy matrix like a functional food; a pilot study. Nutricion Hospitalaria, 28(6), 2107–2114. https://doi.org/10.3305/nh.2013.28.6.6952

Mazaheri, D., Shojaosadati, S. A., Mousavi, S. M., Hejazi, P., & Saharkhiz, S. (2012). Bioethanol production from carob pods by solid-state fermentation with Zymomonas mobilis. Applied Energy, 99, 372–378. https://doi.org/10.1016/j. apenergy.2012.05.045

Mbue, N. D., Mbue, J. E., & Anderson, J. A. (2017). Management of Lipids in Patients with diabetes. Nursing Clinics of North America, 52(4), 605–619. https://doi.org/10.1016/j.cnur.2017.07.009. [99] Tangvarasittichai, S. (2015). Oxidative Stress, insulin Resistance, dyslipidemia and type 2 diabetes mellitus. World Journal of Diabetes, 6(3), 456–480. https://doi.org/10.4239/wjd.v6.i3.456

McClements, D. J., & Xiao, H. (2014). Excipient foods: Designing food matrices that improve the oral bioavailability of pharmaceuticals and nutraceuticals. Food and Function, 5(7), 1320–1333. https://doi.org/10.1039/c4fo00100a

Medeiros, M. L., Lannes, S. C. D. S., & de Substitutos Do Cacau, P. F. (2010). Food Science and Technology, 30, 243–253. https://doi.org/10.1590/S0101-20612010000500037

Medjekal, S., Bodas, R., Bousseboua, H., & López, S. (2018). Evaluation of carob (Ceratonia siliqua) and honey locust (Gleditsia triacanthos) pods as a feed for sheep. Iranian Journal of Applied Animal Science, 8(2), 247–256.

Mekhoukhe, A., Kicher, H., Ladjouzi, A., Fatiha, L. M., De Biomathématiques, L., Medouni-Adrar, S., Madani, K., . . . Madani, K. (2018) Antioxidant activity of carob seeds and chemical composition of their bean gum by- products. Journal of Complementary and Integrative Medicine, 16(1). https://doi.org/10.1515/jcim-2017-0158

Mekhoukhe, A., Mohellebi, N., Mohellebi, T., Deflaoui-Abdelfettah, L., Medouni-Adrar, S., Boulekbache-Makhlouf, L., & Madani, K. (2021). Jam processing: Effect of pectin replacement by locust bean gum on its characteristics. Mediterranean Journal of Nutrition and Metabolism, 14(1), 13–24. https://doi.org/10.3233/MNM-200493

Meziani, S., Oomah, B. D., Zaidi, F., Simon-Levert, A., Bertrand, C., & Zaidi-Yahiaoui, R. (2015). Antibacterial activity of carob (Ceratonia siliqua L.) extracts against phytopathogenic bacteria Pectobacterium atrosepticum. Microbial Pathogenesis, 78, 95–102. http://doi.org/10.1016/j.micpath.2014.12.001

Mokhtari, M., Sharifi, S., & Tabatabaee, M. S., Int. (2011). Proceedings of the Chem. Biology and Environment Eng., 3, 82–86. http://www.ipcbee.com/vol3/22-L10002.pdf

Moreira, da Silva, T. C., A. T., Fagundes, C., & Ferreira, S. M. R. (2017). Candido, ˆ L. M.B., Passos, M, and Krüger, C.C.H. Elaboration of Yogurt with Reduced Level of Lactose Added of Carob (Ceratonia siliqua L.). LWT-Food Science and Technology, 76, 326–329.

Moreira, T. C., Transfeld da Silva, Á., Fagundes, C., Ferreira, S. M. R., Cândido, L. M. B., Passos, M., & Krüger, C. C. H. (2017). Elaboration of yogurt with reduced level of lactose added of carob (Ceratonia siliqua L.). LWT – Food Science and Technology, 76, 326–329. https://doi.org/10.1016/j.lwt.2016.08.033

Morya, S., Awuchi, C. G., & Menaa, F. (2022). Advanced functional approaches of nanotechnology in food and nutrition. In P. Chowdhary, V. Hare & V. Kumar (Eds.), Environmental management technologies: Challenges and opportunities. CRC Press (pp. 257–272). Taylor & Francis. https://doi.org/10.1201/9781003239956-16

Mounce, F. S., Al-Saeed, M. H., & Bas. (2017). Journal of Veterinary Research, 16, 219–242. http://www.basjvet.com/wp-content/uploads/2017/05/219-242.pdf

Mouse, H. A., Tilaoui, M., Jaafari, A., M’barek, L. A., Aboufatima, R., Chait, A., Zyad, A., & Rev. Bras. (2012). Farmacogn, 22, 558–567. http://doi.org/10.1590/S0102- 695X2012005000030

Mudgil, D., Barak, S., & Khatkar, B. S. (2011). Guar gum: processing, properties and food applications—A Review. Journal of Food Science and Technology51(3), 409–418. https://doi.org/10.1007/s13197-011-0522-x

Narin, B., Sungurlu, F., Balci, A., Arman, A., Kurdas, O. O., & Simsek, M. (2009). Comparison of MR enteroclysis with colonoscopy in Crohn’s disease–first locust bean gum study from Turkey. Saudi Journal of Gastroenterology, 15(4), 253–257. https://doi.org/10.4103/1319-3767.56104

Nasar‐Abbas, S. M., E-Huma, Z., Vu, T., Khan, M. K., Esbenshade, H., & Jayasena, V. (2015). Carob Kibble: a Bioactive‐Rich food ingredient. Comprehensive Reviews in Food Science and Food Safety15(1), 63–72. https://doi.org/10.1111/1541-4337.12177

Nelson, R. H. (2013). Hyperlipidemia as a risk factor for cardiovascular disease. Primary Care, 40(1), 195–211. https://doi.org/10.1016/j.pop.2012.11.003

Obeidat, B. S., Alrababah, M. A., Alhamad, M. N., Gharaibeh, M. A., & Ishmais, M. A. A. (2012). Effects of feeding carob pods (Ceratonia siliqua L.) on nursing performance of Awassi ewes and their lambs. Small Ruminant Research, 105(1–3), 9–15. https://doi.org/10.1016/j.smallrumres.2012.01.001

Ozcan, M. M. (2009), ¨ M. M., Arslan, D., & Gokçalik, ¨ H. Some compositional properties and mineral contents of carob ( Ceratonia siliqua ) fruit , flour and syrup. International Journal of Food Sciences and Nutrition, 58(8), 652–658. https://doi.org/10.1080/09637480701395549

Oziyci, H. R., Tetik, N., Turhan, I., Yatmaz, E., Ucgun, K., Akgul, H., Gubbuk, H., & Karhan, M. (2014). Mineral composition of pods and seeds of wild and grafted carob (Ceratonia siliqua L.) fruits. Scientia Horticulturae, 167, 149–152. https://doi.org/10.1016/j.scienta.2014.01.005

Papaefstathiou, E., Agapiou, A., Giannopoulos, S., & Kokkinofta, R. (2018). Nutritional characterization of carobs and traditional carob products. Food Science and Nutrition, May(8), 2151–2161. https://doi.org/10.1002/fsn3.776

Papageorgiou, M., & Skendi, A. (2015). Texture design of “free-from”foods—The case of gluten-free. Modifying Food Texture, 239–268.

Papageorgiou, M., Paraskevopoulou, A., Pantazi, F., & Skendi, A. (2020). Cake perception, texture and aroma profile as affected by wheat flour and cocoa replacement with carob flour. Foods, 9(11), 1586. https://doi.org/10.3390/foods9111586

Papakonstantinou, E., Chaloulos, P., Papalexi, A., & Mandala, I. (2018). Effects of bran size and carob seed flour of optimized bread formulas on glycemic responses in humans: A randomized clinical trial. Journal of Functional Foods, 46, 345–355. https://doi.org/10.1016/j.jff.2018.04.045

Park, Y. W., Oglesby, J., Hayek, S. A., Aljaloud, S. O., Gyawali, R., & Ibrahim, S. A. (2019). Impact of different Gums on textural and microbial properties of goat milk yogurts during refrigerated storage. Foods, 8(5), 169. https://doi.org/10.3390/foods8050169

Pawłowska, K., Kuligowski, M., Jasińska-Kuligowska, I., Kidoń, M., Siger, A., Rudzińska, M., & Nowak, J. (2018). Effect of replacing cocoa powder by carob powder in the muffins on sensory and physicochemical properties. Plant Foods for Human Nutrition, 73(3), 196–202. https://doi.org/10.1007/s11130-018-0675-0

Petit, M. D., & Pinilla, J. M. (1995). Production and purification of a sugar syrup from carob pods. LWT – Food Science and Technology, 28(1), 145–152. https://doi.org/10.1016/S0023-6438(95)80027-1

Petitjean, M., & Isasi, J. R. (2022). Locust bean gum, a vegetable hydrocolloid with industrial and biopharmaceutical applications. Molecules, 27(23), 8265. https://doi.org/10.3390/molecules27238265

Pettinelli, N., Rodríguez-Llamazares, S., Farrag, Y., Bouza, R., Barral, L., Feijoo-Bandín, S., & Lago, F. (2020). Poly(hydroxybutyrate-co-hydroxyvalerate) Microparticles Embedded in κ-carrageenan/locust Bean Gum Hydrogel as a dual Drug Delivery Carrier. International Journal of Biological Macromolecules, 146, 110–118. https://doi.org/10.1016/j.ijbiomac.2019.12.193

Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International Journal of Biomedical Science, 4(2), 89–96. https://doi.org/10.59566/IJBS.2008.4089

Pignataro, G., Di Prinzio, R., Crisi, P. E., Belà, B., Fusaro, I., Trevisan, C., De Acetis, L., & Gramenzi, A. (2021). Comparison of the therapeutic effect of treatment with antibiotics or nutraceuticals on clinical activity and the fecal microbiome of dogs with acute diarrhea. Animals: An Open Access Journal from MDPI, 11(6), 1484. https://doi.org/10.3390/ani11061484

Polanowska, K., Varghese, R., Kuligowski, M., & Majcher, M. (2021). Carob kibbles as an alternative raw material for production of kvass with probiotic potential. Journal of the Science of Food and Agriculture101(13), 5487–5497. https://doi.org/10.1002/jsfa.11197

Prajapati, V. D., Jani, G. K., Moradiya, N. G., Randeria, N. P., & Nagar, B. J. (2013). Locust bean gum: A versatile biopolymer. Carbohydrate Polymers, 94(2), 814–821. https://doi.org/10.1016/j.carbpol.2013.01.086

Prajapati, V. D., Jani, G. K., Moradiya, N. G., Randeria, N. P., Maheriya, P. M., & Nagar, B. J. (2014). Locust bean gum in the development of sustained release mucoadhesive macromolecules of aceclofenac. Carbohydrate Polymers, 113, 138–148. https://doi.org/10.1016/j.carbpol.2014.06.061

Prakash, O., Kumar, R., Srivastava, R., Tripathi, P., Mishra, S., & Ajeet, A. (2015). Plants explored with antidiabetic properties: A review. American Journal of Pharmacological Sciences, 3(3), 55–66.

Primikyri, A., Chatziathanasiadou, M. V., Karali, E., Kostaras, E., Mantzaris, M. D., Hatzimichael, E., Shin, J. S., Chi, S. W., Briasoulis, E., Kolettas, E., Gerothanassis, I. P., & Tzakos, A. G. (2014). Direct binding of Bcl-2 family proteins by quercetin triggers its pro-apoptotic activity. ACS Chemical Biology, 9(12), 2737–2741. https://doi.org/10.1021/cb500259e

Quiles-Carrillo, L., Mellinas, C., Garrigos, M. C., Balart, R., & Torres-Giner, S. (2019). Optimization of microwave-assisted extraction of phenolic compounds with antioxidant activity from carob pods. Food Analytical Methods. AC, 12(11), 2480–2490. https://doi.org/10.1007/s12161-019-01596-3, and Ramstad, P. E. (1950). Amino acid compositions of wheat and carob gluten. Cereal Chemistry, 27, 238–243.

Rached, I., Barros, L., Fernandes, I. P., Santos-Buelga, C., Rodrigues, A. E., Ferchichi, A., Barreiro, M. F., & Ferreira, I. C. (2016). Ceratonia siliqua L. hydroethanolic extract obtained by ultrasonication: Antioxidant activity, phenolic compounds profile and effects in yogurts functionalized with their free and microencapsulated forms. Food and Function, 7(3), 1319–1328. https://doi.org/10.1039/c6fo00100a

Rahmoun, N. M., Ziane, H., & Boucherit-Otmani, Z. (2014). Antibacterial and antifungal screening of four medicinal plants. Journal of Coastal Life Medicine, 2(12), 975–979.

Rahmoun, N. M., Ziane, H., & Boucherit-Otmani, Z. (2014). Antibacterial and antifungal screening of four medicinal plants. Journal of Coastal Life Medicine, 2, 975–979. https://doi.org/10.12980/JCLM.2.2014APJTB-2014-0072

Ravat, T. H., Yardi, V., Mallikarjunan, N., & Jamdar, S. N. (2019). Radiation processing of locust bean gum and assessing its functionality for applications in probiotic and enteral foods. LWT, 112, 108228. https://doi.org/10.1016/j.lwt.2019.05.126

Richane, A., Ismail, H. B., Darej, C., Attia, K., & Moujahed, N. (2022). Potential of Tunisian carob pulp as feed for ruminants: Chemical composition and in vitro assessment. Tropical Animal Health and Production, 54(1), 58. https://doi.org/10.1007/s11250-022-03071-4

Rico, D., Martin-Diana, A. B., Lasa, A., Aguirre, L., Milton-Laskibar, I., De Luis, D. A., & Miranda, J. (2019). Effect of Wakame and carob pod snacks on nonalcoholic fatty liver disease. Nutrients, 11(1), 86.(b. https://doi.org/10.3390/nu11010086

Rico, D., Martín-Diana, A. B., Martínez-Villaluenga, C., Aguirre, L., Silván, J. M., Dueñas, M., De Luis, D. A., & Lasa, A. (2019). In vitro approach for evaluation of carob by-products as source bioactive ingredients with potential to attenuate metabolic syndrome (mets) a. Heliyon, 5(1), e01175. https://doi.org/10.1016/j.heliyon.2019.e01175

Román, L., González, A., Espina, T., & Gómez, M.., Espina, T., & Gomez, ´. (2017) Degree of roasting of carob flour affecting the properties of gluten-free cakes and cookies. Journal of Food Science and Technology, 54(7), 2094–2103. https://doi.org/10.1007/s13197-017-2649-x

Rtibi, K., Jabri, M. A., Selmi, S., Souli, A., Sebai, H., El-Benna, J., Amri, M., & Marzouki, L. (2015a). Carob pods (Ceratonia siliqua L.) inhibit human neutrophils myeloperoxidase and in vitro ROS-scavenging activity. RSC Advances, 5(102), 84207–84215. https://doi.org/10.1039/C5RA14719K

Rtibi, K., Jabri, M. A., Selmi, S., Souli, A., Sebai, H., El-Benna, J., Amri, M., & Marzouki, L. (2015b). Gastroprotective effect of carob (Ceratonia siliqua L.) against ethanol-induced oxidative stress in rat. BMC Complementary and Alternative Medicine, 15(1), 292. https://doi.org/10.1186/s12906-015-0819-9

Rtibi, K., Jabri, M. A., Selmi, S., Souli, A., Sebai, H., El-Benna, J., Amri, M., & Marzouki, L. (2015). Carob pods (Ceratonia siliqua L.) inhibit human neutrophils myeloperoxidase and in vitro ROS-scavenging activity. RSC Advances, 5(102), 84207–84215. https://doi.org/10.1039/C5RA14719K

Rtibi, K., Jabri, M. A., Selmi, S., Souli, S., H., Amri, M., ElBenna, J., & Marzouki, L. (2015). RSC Advances, 6, 65483–65493. https://doi.org/10.1039/c6ra11297h

Rtibi, K., Marzouki, K., Salhi, A., & Sebai, H. (2021). Dietary supplementation of carob and whey modulates gut morphology, hemato-biochemical indices, and antioxidant biomarkers in rabbits. Journal of Medicinal Food, 24(10), 1124–1133. https://doi.org/10.1089/jmf.2020.0185

Rtibi, K., Selmi, S., Grami, D., Saidani, K., Sebai, H., Amri, M., Marzouki, L., Marzouki, L., & Ceratonia Siliqua, L. (2017). Ceratonia siliqua L. (immature carob bean) Inhibits intestinal glucose absorption, improves glucose tolerance and protects against alloxan-induced diabetes in rat. Journal of the Science of Food and Agriculture, 97(8), 2664–2670. https://doi.org/10.1002/jsfa.8091

Ruiz‐Roso, B., Quintela, J. C., De La Fuente, E., Haya, J., & Pérez‐Olleros, L. (2010). Insoluble carob fiber rich in polyphenols lowers total and LDL cholesterol in hypercholesterolemic sujects. Plant Foods for Human Nutrition65(1), 50–56. https://doi.org/10.1007/s11130-009-0153-9

Saci, F., Bachir bey, M., Louaileche, H., Gali, L., & Bensouici, C. (2020). Changes in anticholinesterase, antioxidant activities and related bioactive compounds of carob pulp (Ceratonia siliqua L.) during ripening stages. Journal of Food Measurement and Characterization, 14(2), 937–945. https://doi.org/10.1007/s11694-019-00344-9

Sadat, S. S., Mohammadi, S., Sazegar, G., Fazel, A., Ebrahimzadeh, A., Ghayour Mobarhan, M., Beheshti, F., Attari, S. S., & Tavallaei, S. (2019). Effects of carob fruit extract on spermatogenesis, antioxidant status, and apoptosis in adult male mice. Pharmaceutical Sciences, 25(3), 184–189. https://doi.org/10.15171/PS.2019.28

Salem, E. M., & Fahad, A. O. (2012). Substituting of cacao by carob pod powder in milk chocolate manufacturing. Aus. J. Bas. Appl. Sci., 6(3).

Santilli, F., Guagnano, M. T., Vazzana, N., La Barba, S., & Davi, G. (2015). Oxidative stress drivers and modulators in obesity and cardiovascular disease: From biomarkers to therapeutic approach. Current Medicinal Chemistry, 22(5), 582–595. https://doi.org/10.2174/0929867322666141128163739

Sassi, A., Bouhlel, I., Mustapha, N., Mokdad-Bzeouich, I., Chaabane, F., Ghedira, K., & Chekir-Ghedira, L. (2016). Assessment in vitro of the genotoxicity, antigenotoxicity and antioxidant of Ceratonia siliqua L. extracts in murine leukaemia cells L1210 by comet assay. Regulatory Toxicology and Pharmacology, 77, 117–124. http://doi.org/10.1016/j.yrtph.2016.02.009

Sayiner, M., Koenig, A., Henry, L., & Younossi, Z. M. (2016). Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in the United States and the rest of the world. Clinics in Liver Disease, 20(2), 205–214. https://doi.org/10.1016/j.cld.2015.10.001

Sciammaro, L. P., Ferrero, C., & Puppo, M. C. (2018). Gluten-free baked muffins developed with Prosopis A. Flour. LWT, 98, 568–576. https://doi.org/10.1016/j.lwt.2018.09.045

Sebai, H., Souli, A., Chehimi, L., Rtibi, K., Amri, M., ElBenna, S., & M. (2013). Journal of Medicinal Plants Research, 7, 5–90. https://doi.org/10.5897/JMPR12.915

Sęczyk, Ł., Świeca, M., & Gawlik-Dziki, U. (2016). Effect of carob (Ceratonia siliqua L.) flour on the antioxidant potential, nutritional quality, and sensory characteristics of fortified durum wheat pasta. Food Chemistry, 194, 637–642. http://doi.org/10.1016/j.foodchem.2015.08.086

Sengül, M., Fatih Ertugay, M., Sengül, M., & Yüksel, Y. (2007). Rheological characteristics of carob pekmez. International Journal of Food Properties, 10(1), 39–46. https://doi.org/10.1080/10942910600627996

Sharaf, H. A., Shaffie, N., Morsy, F. A., Badawi, M., & Abbas, N. F. (2015b). Role of some phytoestrogens in recovering bone loss: histological results from experimental ovariectomized rat models. Journal of the Arab Society for Medical Research (Print)10(2), 65. https://doi.org/10.4103/1687-4293.175880

Singh, R. S., Kaur, N., Rana, V., Singla, R. K., Kang, N., Kaur, G., Kaur, H., & Kennedy, J. F. (2020). Carbamoylethyl locust bean gum: Synthesis, characterization and evaluation of its film forming potential. International Journal of Biological Macromolecules, 149, 348–358. https://doi.org/10.1016/j.ijbiomac.2020.01.261

Siriwongwilaichat, P., & Koedcharoenporn, J. (2019). Improvement of texture and gel stability of restructured frozen mango pulp by using xanthan gum and locust bean gum. Sci. Eng. Health Stud., 59–72.

Skalli, S., Hassikou, R., & Arahou, M. (2019). An ethnobotanical survey of medicinal plants used for diabetes treatment in Rabat, Morocco. Heliyon, 5(3), e01421. https://doi.org/10.1016/j.heliyon.2019.e01421.

Skaltsi, A., Marinopoulou, A., Poriazi, A., Petridis, D., & Papageorgiou, M. (2022). Development and optimization of gluten‐free biscuits with carob flour and dry apple pomace. Journal of Food Processing and Preservation, 46(10), e15938. https://doi.org/10.1111/jfpp.15938

Smith, B. M., Bean, S. R., Schober, T. J., Tilley, M., Herald, T. J., Aramouni, F., Dakia, P. A., Wathelet, B., Paquot, M., Bengoechea, C., Romero, A., Villanueva, A., Moreno, G., Alaiz, M., & Millan, ´ F., Guerrero, A. (2008). Composition and molecular weight distribution of carob germ protein fractions. Puppo, M.C., Lakkab. Food Chemistry, 102(2), 675–683, I., El, H., … Ghoul, M. https://doi.org/10.1016/j. foodchem.2007.08.069

Sonmez, & A. Y. D. I. N. O. L.; Ozcan, T. (2022). Assessment of structure and sensory characteristics of reduced fat yoghurt manufactured with carob bean gum polysaccharides. Food Science and T Echnology, 2021, 42. https://doi.org/10.1590/fst.61220

Sour, S., Chahinez, F., & Taif, A. (2019). Beneficial Effects of Carob Pulp (Ceratonia siliqua) on Lipids Profile and Oxidant/antioxidant Status in Obese Rats. Revue Agrobiologia, 9(1), 1200–1206.

Srour, N., Daroub, H., Toufeili, I., & Olabi, A. (2016). Developing a carob-based milk beverage using different varieties of carob pods and two roasting treatments and assessing their effect on quality characteristics. Journal of the Science of Food and Agriculture, 96(9), 3047–3057. https://doi.org/10.1002/jsfa.7476

Stankov, S., Dzhivoderova‐Zarcheva, M., Dimitrova, E., Damyanova‐Bakardzhieva, M., & Fidan, H. (2020). Rheological and sensory properties of glazes prepared with carob and cocoa powders. Journal of Food Processing and Preservation, 44(8), e14580. https://doi.org/10.1111/jfpp.14580

Suzek, H., Celik, I., & Dogan, A. (2017). Nephroprotective Hepatoprotective Potential and Antioxidant Role of Carob Pods (Cerotonia siliqua L.) against Carbon Tetrachloride-induced Toxicity in Rats. Indian Journal of Pharmaceutical Education and Research, 51(2), 312–320. https://doi.org/10.5530/ijper.51.2.37

Talibi, I., Askarne, L., Boubaker, H., Boudyach, E. H., Msanda, F., Saadi, B., & Ben Aoumar, A. A. (2012). Antifungal activity of Moroccan medicinal plants against citrus sour rot agent Geotrichum candidum. Letters in Applied Microbiology, 55(2), 155–161. https://doi.org/10.1111/j.1472-765X.2012.03273.x

Temiz, M. A., Temur, A., & Celik, I. (2015). Journal of Food and Nutrition Research, 3, 57–61. https://doi.org/10.12691/jfnr-3-1-10

Tounsi, L., Karra, S., Kechaou, H., & Kechaou, N. (2017). Processing, physico-chemical and functional properties of carob molasses and powders. Journal of Food Measurement and Characterization, 11(3), 1440–1448. https://doi.org/10.1007/s11694-017-9523-4

Tous, J., & Antoni, C. S. (2013). The carob tree: Botany, horticulture, and genetic resources. Horticultural reviews (1st ed), 41, 500 mm.

Tsatsaragkou, K., Gounaropoulos, G., & Mandala, I. (2014). Development of gluten free bread containing carob flour and resistant starch. LWT – Food Science and Technology, 58(1), 124–129. https://doi.org/10.1016/j.lwt.2014.02.043

Tsatsaragkou, K., Kara, T., Ritzoulis, C., Mandala, I., & Rosell, C. M. (2017). Improving carob flour performance for making gluten-free breads by particle size fractionation and jet milling. Food and Bioprocess Technology, 10(5), 831–841. https://doi.org/10.1007/s11947-017-1863-x

Tsatsaragkou, K., Papantoniou, M., & Mandala, I. (2015). Rheological, physical, and sensory attributes of gluten‐free rice cakes containing resistant starch. Journal of Food Science, 80(2), E341–E348. https://doi.org/10.1111/1750-3841.12766

Tsatsaragkou, K., Yiannopoulos, S., Kontogiorgi, A., Poulli, E., Krokida, M., & Mandala, I. (2012). Mathematical approach of structural and textural properties of gluten free bread enriched with carob flour. Journal of Cereal Science, 56(3), 603–609. https://doi.org/10.1016/j.jcs.2012.07.007

Tsatsaragkou, Κ., Gounaropoulos, G., & Mandala, I. (2014). Development of gluten free bread containing carob flour and resistant starch. LWT58(1), 124–129. https://doi.org/10.1016/j.lwt.2014.02.043.

Turfani, V., Narducci, V., Durazzo, A., Galli, V., & Carcea, M. (2017). Technological, nutritional and functional properties of wheat bread enriched with lentil or carob fl ours. LWT, 78, 361–366. https://doi.org/10.1016/j.lwt.2016.12.030

Turhan, I., Bialka, K. L., Demirci, A., & Karhan, M. (2010). Enhanced lactic acid production from carob extract by Lactobacillus casei using invertase pretreatment. Food Biotechnology, 24(4), 364–374. https://doi.org/10.1080/08905436.2010.524485

Uysal, S., Zengin, G., & Aktumsek, A. (2015). Studies on in vitro Antioxidant Activities of Nine Different Fruit Tree Leaves Collected From Mediterranean Region of Turkey. Journal of Medicinal Herbs and Ethnomedicine, 1(1), 97–102. https://doi.org/10.5455/jmhe.2015.09.022

Valero-Munoz, M., Ballesteros, S., Ruiz-Roso, B., Pérez-Olleros, L., Martín-Fernández, B., Lahera, V., de Las Heras, N., de Las Heras, N., P´erez-Olleros, Martín-Fern´ andez. (2019) Supplementation with an insoluble fiber obtained from carob pod (Ceratonia siliqua L.) rich in polyphenols prevents dyslipidemia in rabbits through SIRT1/PGC-1α pathway. European Journal of Nutrition, 58(1), 357–366. https://doi.org/10.1007/s00394-017-1599-4

Valero-Muñoz, M., Martín-Fernández, B., Ballesteros, S., Lahera, V., & de Las Heras, N. (2014). Carob Pod Insoluble Fiber Exerts anti-atherosclerotic Effects in Rabbits through Sirtuin-1 and peroxisome proliferator-activated receptor-γ coactivator-1α. Journal of Nutrition, 144(9), 1378–1384. https://doi.org/10.3945/jn.114.196113

Verdile, G., Keane, K. N., Cruzat, V. F., Medic, S., Sabale, M., Rowles, J., Newsholme, P., Martins, R. N., Fraser, P. E., & Newsholme, P. (2015). Inflammation and oxidative stress: The molecular connectivity between insulin resistance, obesity, and Alzheimer’s disease. Mediators of Inflammation, 2015, 1–17. https://doi.org/10.1155/2015/105828

Verma, A., Tiwari, A., Panda, P. K., Saraf, S., Jain, A., & Jain, S. K. (2019). Locust bean gum in drug Delivery application. In Natural polysaccharides in drug delivery and biomedical applications (pp. 203–222). Academic Press.

Vitali Čepo, D., Mornar, A., Nigović, B., Kremer, D., Radanović, D., & Vedrina Dragojević, I. (2014). Optimization of roasting conditions as an useful approach for increasing antioxidant activity of carob powder. LWT – Food Science and Technology, 58(2), 578–586. https://doi.org/10.1016/j.lwt.2014.04.004

Wang, J., & Li, Q. X. (2011). Chemical composition, characterization, and differentiation of honey botanical and geographical origins. In Inadvances in food and nutrition research (1st ed., Vol. 62). Elsevier Inc., 89–137. https://doi.org/10.1016/B978-0-12-385989

Wielinga, W., & Gums, S. (2010). In A. Imeson (Ed.). Food stabilizers, thickeners and gelling agents (pp. 167–179). Wiley-Blackwell.

Yatmaz, E., & Turhan, I. (2012). Optimization of mannanase production from Aspergillus sojae pyrG− transformed using response surface method. Journal of Biotechnology, 161, 39. https://doi.org/10.1016/j.jbiotec.2012.07.122

Yatmaz, E., & Turhan, İ. (2018b). Carob as a carbon source for fermentation technology. Biocatalysis and Agricultural Biotechnology16, 200–208. https://doi.org/10.1016/j.bcab.2018.08.006

Ydjedd, S., Bouriche, S., López-Nicolás, R., Sánchez-Moya, T., Frontela-Saseta, C., Ros-Berruezo, G., Rezgui, F., Louaileche, H., & Kati, D. E. (2017). Effect of in Vitro Gastrointestinal Digestion on Encapsulated and Nonencapsulated Phenolic Compounds of Carob (Ceratonia siliqua L.) Pulp Extracts and Their Antioxidant Capacity. Journal of Agricultural and Food Chemistry, 65(4), 827–835. https://doi.org/10.1021/acs.jafc.6b05103

Yousif, A. K., & Alghzawi, H. M. (2000). Processing and characterization of carob powder. Food Chemistry, 69(3), 283–287. https://doi.org/10.1016/S0308-8146(99) 00265-4.

Zhao, X., Wang, Q., Yang, S., Chen, C., Li, X., Liu, J., Zou, Z., & Cai, D. (2016). Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast Cancer. European Journal of Pharmacology, 781, 60–68. https://doi.org/10.1016/j.ejphar.2016.03.063.

How to Cite

Shadma Naaz, Nishtha Khansili, Shweta Sharma . A Recent Trend on Functional and Therapeutic Role of Carob Beans In Food Products. J. Multidiscip. Res. Healthcare. 2022, 09, 11-30
A Recent Trend on Functional and Therapeutic Role of Carob Beans In Food Products

Current Issue

PeriodicityBiannually
Issue-1October
Issue-2April
ISSN Print2393-8536
ISSN Online2393-8544
RNI No.CHAENG/2014/57978
OA Policy

Publisher's policy of the journal at Sherpa UK for the submitted, accepted, and published articles. Click OAPolicy

Plan-S Compliance

To check compliance, one has to use the Journal Check Tool (JCT). This tool provided by cOAlition S (European funders) for the researchers (fundee) to check the compliance with the journal.

Recommend journal to your library

You can recommend the journal being a researcher or faculty member to your library. We will post a copy of the Journal to your library on your behalf at free of cost.
Click here: Recommend Journal

Preprint Arxiv Submission

The authors are encouraged to submit the author’s copy (preprint) to appropriate preprint archives e.g. https://arxiv.org and/or on https://indiarxiv.org or institutional repositories (e.g., D Space) before paper acceptance by the editor of Journal. After publications of the paper author(s) should mention the citation information, title and abstract along with DOI number of the publication carefully on the required page of the depository(ies).

Contact:

Phone: +91-172-2741000, +91-172-4691800
Email : editor.jmrh@chitkara.edu.in

Abstract and Indexing

This work is licensed under a Creative Commons Attribution 4.0 International License.

Articles in Journal of Multidisciplinary Research in Healthcare by Chitkara University Publications are Open Access articles that are published with licensed under a Creative Commons Attribution- CC-BY 4.0 International License. Based on a work at https://jmrh.chitkara.edu.in/. This license permits one to use, remix, tweak and reproduction in any medium, even commercially provided one give credit for the original creation.

View Legal Code of the above-mentioned license, https://creativecommons.org/licenses/by/4.0/legalcode

View Licence Deed here https://creativecommons.org/licenses/by/4.0/

Creative Commons License

Journal of Multidisciplinary Research in Healthcare by Chitkara University Publications is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://jmrh.chitkara.edu.in/

Members