The Eye in Space: Optometry’s Role in Managing Vision Challenges in Microgravity

Published: November 28, 2025

Authors

Mahak, Sachitanand Singh and Nakul Sankhayadhar

Keywords
Spaceflight associated neuro-ocular syndrome, Optometry, Microgravity, Space medicine, Vision challenges

Abstract

Background: Spaceflight-Associated Neuro-Ocular Syndrome (SANS) is a major health threat to astronauts experiencing long-duration spaceflight. SANS is characterized by optic disc edema, globe flattening, choroidal folds, hyperopic shifts, and increased retinal thickness. These changes are primarily caused by cephalad fluid shifts and altered intracranial pressure (ICP), all of which have implications for visual function, mission safety, and long-term ocular health.

Purpose: This paper reviews the literature related to the cause, diagnosis, treatment, and optometric consequences of SANS and discusses the essential role of optometry in the eye care of astronauts, as well as possible translational applications for eye problems on Earth.

Methods: A systematic narrative review was conducted using the databases PubMed, Scopus, Web of Science, and Google Scholar over the period of 2010–2025. Studies focused on ocular changes in astronauts, imaging modalities (OCT, MRI, ultrasonography), and countermeasures. Results were categorized into diagnostic modalities, pathophysiology, interventions, visual performance, and optometric implications.

Results: Approximately 60–69% of long-duration astronauts exhibited visual changes compared to 29% for shorter missions. Similar studies failed to replicate the same direction of the SANS condition, although modeling found evidence of orbital fat edema and the risk of structural vulnerability to increased intracranial pressure or IOP. Diagnostic methods are noninvasive, thus potentially improving utilization in space. Diagnostic methods such as OCT, ultrasonography, fundus photography, and AI-facilitated algorithms likely have more sensitivity than traditional methods. Countermeasures such as artificial gravity, lower body negative pressure, and fluid-shifting garments partially mitigated the incidence of SANS. Functional performance included decreased contrast sensitivity, loss of stereoacuity, and transient refractive shift.

Conclusion: SANS is a multifaceted syndrome that encompasses intracranial pressure, fluid mechanisms, vascular and glymphatic drainage, anatomical considerations, and environmental stressors. Optometry plays a critical role in diagnosing, monitoring, and rehabilitation and can impart translational information related to disorders such as idiopathic intracranial hypertension and glaucoma.

References

  • Aleci, C., & Dutto, K. (2025). Insights and an update on spaceflight-associated neuro-ocular syndrome (SANS). Discover Medicine, 2(1). https://doi.org/10.1007/s44337-025-00421-7
  • Brunstetter, T. J., Zwart, S. R., Brandt, K., Brown, D. M., Clemett, S. J., Douglas, G. L., Gibson, C. R., Laurie, S. S., Lee, A. G., Macias, B. R., Mader, T. H., Mason, S. S., Meir, J. U., Morgan, A. R., Nelman, M., Patel, N., Sams, C., Suresh, R., Tarver, W., … Smith, S. M. (2024). Severe spaceflight-associated neuro-ocular syndrome in an astronaut with 2 predisposing factors. JAMA Ophthalmology, 142(9), 808. https://doi.org/10.1001/jamaophthalmol.2024.2385
  • Fall, D. A., Lee, A. G., Bershad, E. M., Kramer, L. A., Mader, T. H., Clark, J. B., & Hirzallah, M. I. (2022). Optic nerve sheath diameter and spaceflight: Defining shortcomings and Future Directions. Npj Microgravity, 8(1). https://doi.org/10.1038/s41526-022-00228-1
  • Freese, S., Reddy, A. P., & Lehnhardt, K. (2016). Radiation impacts on human health during spaceflight beyond low Earth orbit. Reach, 2–4, 1–7. https://doi.org/10.1016/j.reach.2016.11.002
  • Gracheva, M. A., Kazakova, A. A., & Manko, O. M. (2023). State of the retina and optic nerve in 21-day head-down Tilt Bed Rest. Human Physiology, 49(6), 625–634. https://doi.org/10.1134/s0362119723600224
  • Greenwald, S. H., Macias, B. R., Lee, S. M., Marshall-Goebel, K., Ebert, D. J., Liu, J. H., Ploutz-Snyder, R. J., Alferova, I. V., Dulchavsky, S. A., Hargens, A. R., Stenger, M. B., & Laurie, S. S. (2021). Intraocular pressure and choroidal thickness respond differently to lower body negative pressure during spaceflight. Journal of Applied Physiology, 131(2), 613–620. https://doi.org/10.1152/japplphysiol.01040.2020
  • Hall, E. A., Whittle, R. S., & Diaz-Artiles, A. (2024). Ocular perfusion pressure is not reduced in response to lower body negative pressure. Npj Microgravity, 10(1). https://doi.org/10.1038/s41526-024-00404-5
  • Händel, A., Stern, C., Jordan, J., Dietlein, T., Enders, P., & Cursiefen, C. (2020). Eye changes in space. Der Ophthalmologe, 118(S1), 96–101. https://doi.org/10.1007/s00347-020-01272-6
  • Hearon, C. M., Dias, K. A., Babu, G., Marshall, J. E., Leidner, J., Peters, K., Silva, E., MacNamara, J. P., Campain, J., & Levine, B. D. (2022). Effect of nightly lower body negative pressure on choroid engorgement in a model of spaceflight-associated neuro-ocular syndrome. JAMA Ophthalmology, 140(1), 59. https://doi.org/10.1001/jamaophthalmol.2021.5200
  • Jasien, J. V., Laurie, S. S., Lee, S. M., Martin, D. S., Kemp, D. T., Ebert, D. J., Ploutz-Snyder, R., Marshall-Goebel, K., Alferova, I. V., Sargsyan, A., Danielson, R. W., Hargens, A. R., Dulchavsky, S. A., Stenger, M. B., & Macias, B. R. (2022). Noninvasive indicators of intracranial pressure before, during, and after long-duration spaceflight. Journal of Applied Physiology, 133(3), 721–731. https://doi.org/10.1152/japplphysiol.00625.2021
  • Kamran, S. A., Hossain, K. F., Ong, J., Zaman, N., Waisberg, E., Paladugu, P., Lee, A. G., & Tavakkoli, A. (2024). Sans-CNN: An automated machine learning technique for spaceflight associated neuro-ocular syndrome with Astronaut Imaging Data. Npj Microgravity, 10(1). https://doi.org/10.1038/s41526-024-00364-w
  • Laurie, S. S., Greenwald, S. H., Marshall‐Goebel, K., Pardon, L. P., Gupta, A., Lee, S. M., Stern, C., Sangi‐Haghpeykar, H., Macias, B. R., & Bershad, E. M. (2021). Optic disc edema and chorioretinal folds develop during strict 6° head‐down tilt bed rest with or without artificial gravity. Physiological Reports, 9(15). https://doi.org/10.14814/phy2.14977
  • Lawley, J. S., Babu, G., Janssen, S. L., Petersen, L. G., Hearon, C. M., Dias, K. A., Sarma, S., Williams, M. A., Whitworth, L. A., & Levine, B. D. (2020). Daily generation of a footward fluid shift attenuates ocular changes associated with head-down Tilt Bed Rest. Journal of Applied Physiology, 129(5), 1220–1231. https://doi.org/10.1152/japplphysiol.00250.2020
  • Lee, A. G., Mader, T. H., Gibson, C. R., Brunstetter, T. J., & Tarver, W. J. (2018). Space flight-associated neuro-ocular syndrome (SANS). Eye, 32(7), 1164–1167. https://doi.org/10.1038/s41433-018-0070-y
  • Lee, A. G., Mader, T. H., Gibson, C. R., Tarver, W., Rabiei, P., Riascos, R. F., Galdamez, L. A., & Brunstetter, T. (2020). Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: A review and an update. Npj Microgravity, 6(1). https://doi.org/10.1038/s41526-020-0097-9
  • Lee, J. K., Koppelmans, V., Riascos, R. F., Hasan, K. M., Pasternak, O., Mulavara, A. P., Bloomberg, J. J., & Seidler, R. D. (2019). Spaceflight-associated brain white matter microstructural changes and intracranial fluid redistribution. JAMA Neurology, 76(4), 412. https://doi.org/10.1001/jamaneurol.2018.4882
  • Macias, B. R., Patel, N. B., Gibson, C. R., Samuels, B. C., Laurie, S. S., Otto, C., Ferguson, C. R., Lee, S. M., Ploutz-Snyder, R., Kramer, L. A., Mader, T. H., Brunstetter, T., & Stenger, M. B. (2020). Association of long-duration spaceflight with anterior and posterior ocular structure changes in astronauts and their recovery. JAMA Ophthalmology, 138(5), 553. https://doi.org/10.1001/jamaophthalmol.2020.0673
  • Marshall-Goebel, K., Macias, B. R., Kramer, L. A., Hasan, K. M., Ferguson, C., Patel, N., Ploutz-Snyder, R. J., Lee, S. M., Ebert, D., Sargsyan, A., Dulchavsky, S., Hargens, A. R., Stenger, M. B., & Laurie, S. (2021). Association of structural changes in the brain and retina after long-duration spaceflight. JAMA Ophthalmology, 139(7), 781. https://doi.org/10.1001/jamaophthalmol.2021.1400
  • Martin Paez, Y., Mudie, L. I., & Subramanian, P. S. (2020). <p>spaceflight associated neuro-ocular syndrome (SANS): A systematic review and future directions</p>. Eye and Brain, Volume 12, 105–117. https://doi.org/10.2147/eb.s234076
  • Meer, E. A., Church, L. E., Johnson, B. A., Rohde, J., Sinclair, A. J., Mollan, S. P., Petersen, L., Polk, J. D., & Sawyer, A. J. (2025). Non invasive monitoring for Spaceflight Associated Neuro Ocular Syndrome: Responding to a need for in flight methodologies. Npj Microgravity, 11(1). https://doi.org/10.1038/s41526-025-00502-y
  • Meer, E., Grob, S., Antonsen, E. L., & Sawyer, A. (2023). Ocular conditions and injuries, detection and management in spaceflight. Npj Microgravity, 9(1). https://doi.org/10.1038/s41526-023-00279-y
  • Mehare, A., Chakole, S., & Wandile, B. (2024). Navigating the unknown: A comprehensive review of spaceflight-associated neuro-ocular syndrome. Cureus. https://doi.org/10.7759/cureus.53380
  • Ng, V. W., & Mollan, S. P. (2025). An eye on long‐duration spaceflight: Controversies, countermeasures and Challenges. Experimental Physiology. https://doi.org/10.1113/ep091561
  • Ong, J., Sampige, R., Lee, R., Memon, H., Panzo, N., Kadipasaoglu, C. M., Guo, Y., Sandhur, B. S., Soares, B., Osteicoechea, D., Waisberg, E., Suh, A., Nguyen, T., Masalkhi, M., Sarker, P., Zaman, N., Tavakkoli, A., Berdahl, J., Chévez-Barrios, P., & Lee, A. G. (2025). Imaging the anterior segment in spaceflight: Understanding and preserving astronaut ocular health for long-duration missions. Journal of Clinical &amp; Translational Ophthalmology, 3(1), 5. https://doi.org/10.3390/jcto3010005
  • Ong, J., Tarver, W., Brunstetter, T., Mader, T. H., Gibson, C. R., Mason, S. S., & Lee, A. (2023). Spaceflight Associated Neuro-Ocular Syndrome: Proposed pathogenesis, terrestrial analogues, and emerging countermeasures. British Journal of Ophthalmology, 107(7), 895–900. https://doi.org/10.1136/bjo-2022-322892
  • Ong, J., Waisberg, E., Masalkhi, M., Kamran, S. A., Lowry, K., Sarker, P., Zaman, N., Paladugu, P., Tavakkoli, A., & Lee, A. G. (2023). Artificial Intelligence Frameworks to detect and investigate the pathophysiology of spaceflight associated neuro-ocular syndrome (SANS). Brain Sciences, 13(8), 1148. https://doi.org/10.3390/brainsci13081148
  • Pardon, L. P., Cheng, H., Chettry, P., & Patel, N. B. (2020). Optic nerve head morphological changes over 12 hours in seated and head-down Tilt Postures. Investigative Opthalmology &amp; Visual Science, 61(13), 21. https://doi.org/10.1167/iovs.61.13.21
  • Petersen, L. G., Hargens, A., Bird, E. M., Ashari, N., Saalfeld, J., & Petersen, J. C. (2019). Mobile lower body negative pressure suit as an integrative countermeasure for spaceflight. Aerospace Medicine and Human Performance, 90(12), 993–999. https://doi.org/10.3357/amhp.5408.2019
  • Reilly, M. A., Katz, S. E., & Roberts, C. J. (2023). Orbital fat swelling: A biomechanical theory and supporting model for spaceflight-associated neuro-ocular syndrome (SANS). Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1095948
  • Roberts, D. R., Zhu, X., Tabesh, A., Duffy, E. W., Ramsey, D. A., & Brown, T. R. (2015). Structural brain changes following long-term 6° head-down tilt bed rest as an analog for spaceflight. American Journal of Neuroradiology, 36(11), 2048–2054. https://doi.org/10.3174/ajnr.a4406
  • Rodrigues, G. A., Russomano, T., & Santos Oliveira, E. (2025). Understanding the relationship between intracranial pressure and spaceflight associated neuro-ocular syndrome (SANS): A systematic review. Npj Microgravity, 11(1). https://doi.org/10.1038/s41526-025-00464-1
  • Sater, S. H., Conley Natividad, G., Seiner, A. J., Fu, A. Q., Shrestha, D., Bershad, E. M., Marshall-Goebel, K., Laurie, S. S., Macias, B. R., & Martin, B. A. (2022). MRI-based quantification of posterior ocular globe flattening during 60 days of strict 6° head-down tilt bed rest with and without daily centrifugation. Journal of Applied Physiology, 133(6), 1349–1355. https://doi.org/10.1152/japplphysiol.00082.2022
  • Sater, S. H., Sass, A. M., Seiner, A., Natividad, G. C., Shrestha, D., Fu, A. Q., Oshinski, J. N., Ethier, C. R., & Martin, B. A. (2021). MRI-based quantification of ophthalmic changes in healthy volunteers during acute 15° head-down tilt as an analogue to microgravity. Journal of The Royal Society Interface, 18(177). https://doi.org/10.1098/rsif.2020.0920
  • Scott, J. M., Tucker, W. J., Martin, D., Crowell, J. B., Goetchius, E., Ozgur, O., Hamilton, S., Otto, C., Gonzales, R., Ritter, M., Newby, N., DeWitt, J., Stenger, M. B., Ploutz-Snyder, R., Ploutz-Snyder, L., Morgan, W. H., & Haykowsky, M. J. (2019). Association of exercise and swimming goggles with modulation of cerebro-ocular hemodynamics and pressures in a model of spaceflight-associated neuro-ocular syndrome. JAMA Ophthalmology, 137(6), 652. https://doi.org/10.1001/jamaophthalmol.2019.0459
  • Shah, J., Ong, J., Lee, R., Suh, A., Waisberg, E., Gibson, C. R., Berdahl, J., & Mader, T. H. (2025). Risk of permanent corneal injury in microgravity: Spaceflight-associated hazards, challenges to vision restoration, and role of biotechnology in long-term planetary missions. Life, 15(4), 602. https://doi.org/10.3390/life15040602
  • Sibony, P. A., Laurie, S. S., Ferguson, C. R., Pardon, L. P., Young, M., Rohlf, F. J., & Macias, B. R. (2023). Ocular deformations in spaceflight-associated neuro-ocular syndrome and idiopathic intracranial hypertension. Investigative Opthalmology &amp; Visual Science, 64(3), 32. https://doi.org/10.1167/iovs.64.3.32
  • Soares, B., Ong, J., Waisberg, E., Sarker, P., Zaman, N., Tavakkoli, A., & Lee, A. G. (2024). Imaging in spaceflight Associated Neuro-ocular syndrome (SANS): Current technology and future directions in Modalities. Life Sciences in Space Research, 42, 40–46. https://doi.org/10.1016/j.lssr.2024.04.004
  • Taniguchi-Shinojima, A. (2022). Mechanical alterations of the brain and optic chiasm in spaceflight associated neuro-ocular syndrome. Spaceflight Associated Neuro-Ocular Syndrome, 77–84. https://doi.org/10.1016/b978-0-323-91524-3.00014-4
  • Vandana, V. (2025). Advances in OCT (Optical Coherence Tomography) Imaging for Early Detection of Macular Degeneration. Scholar’s Digest: Journal of Ophthalmology, 1(1), 110–129.
  • Velichala, S., Kassel, R., Ly, V., Watenpaugh, D., Lee, S., Macias, B., & Hargens, A. (2024). Self-generated lower body negative pressure exercise: A low power countermeasure for acute space missions. Life, 14(7), 793. https://doi.org/10.3390/life14070793
  • Venegas, J. M., & Rosenberg, M. (2025). Sleep deprivation and glymphatic system dysfunction as a risk factor for sans during long-duration spaceflight. Life Sciences in Space Research, 46, 39–42. https://doi.org/10.1016/j.lssr.2025.03.009
  • Williams, G. A., & Parke, D. W. (2019). Continuing professional certification: Perspective of the American Academy of Ophthalmology. Ophthalmology, 126(7), 926–927. https://doi.org/10.1016/j.ophtha.2019.03.043

How to Cite

Mahak, Sachitanand Singh and Nakul Sankhayadhar. The Eye in Space: Optometry’s Role in Managing Vision Challenges in Microgravity. J. Multidiscip. Res. Healthcare. 2025, 11, 71-82
The Eye in Space: Optometry’s Role in Managing Vision Challenges in Microgravity

Current Issue

PeriodicityBiannually
Issue-1June
Issue-2December
ISSN Print2393-8536
ISSN Online2393-8544
RNI No.CHAENG/2014/57978

This work is licensed under a Creative Commons Attribution 4.0 International License.

Articles in Journal of Multidisciplinary Research in Healthcare by Chitkara University Publications are Open Access articles that are published with licensed under a Creative Commons Attribution- CC-BY 4.0 International License. Based on a work at https://jmrh.chitkara.edu.in/. This license permits one to use, remix, tweak and reproduction in any medium, even commercially provided one give credit for the original creation.

View Legal Code of the above-mentioned license, https://creativecommons.org/licenses/by/4.0/legalcode

View Licence Deed here https://creativecommons.org/licenses/by/4.0/

Creative Commons License

Journal of Multidisciplinary Research in Healthcare by Chitkara University Publications is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://jmrh.chitkara.edu.in/

Visibility, Memberships and Ethics